login
A103243
Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (1-(k+1)^3)^(n-k)/(n-k)! for n >= k >= 1.
1
1, 7, 1, 315, 26, 1, 45682, 2600, 63, 1, 15646589, 675194, 11655, 124, 1, 10567689552, 366349152, 4861458, 37944, 215, 1, 12503979423607, 361884843866, 3882676581, 23641468, 100835, 342, 1, 23841011541867520, 591934698991168, 5318920238688
OFFSET
1,2
COMMENTS
Define triangular matrix P by P(n,k) = (-k^3-3k^2-3k)^(n-k)/(n-k)!, then M = P*D*P^-1 = A103237 satisfies: M^3 + 3M^2 + 3M = SHIFTUP(M) where D is the diagonal matrix consisting of {1,2,3,...}. The operation SHIFTUP(M) shifts each column of M up 1 row. Essentially equal to square array A082172 as a triangular matrix. The first column is A082160 (quasi-acyclic automata with 3 inputs).
FORMULA
For n > k >= 1: 0 = Sum_{m=k..n} C(n-k, m-k)*(1-(m+1)^3)^(n-m)*T(m, k). For n > k >= 1: 0 = Sum_{j=k..n} C(n-k, j-k)*(1-(k+1)^3)^(j-k)*T(n, j).
EXAMPLE
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0! ],
[7/1!, 1/0! ],
[315/2!, 26/1!, 1/0! ],
[45682/3!, 2600/2!, 63/1!, 1/0! ],
[15646589/4!, 675194/3!, 11655/2!, 124/1!, 1/0! ],
[10567689552/5!, 366349152/4!, 4861458/3!, 37944/2!, 215/1!, 1/0! ], ...
forming the inverse of matrix P where P(n,k) = A103247(n,k)/(n-k)!:
[1/0! ],
[ -7/1!, 1/0! ],
[49/2!, -26/1!, 1/0! ],
[ -343/3!, 676/2!, -63/1!, 1/0! ],
[2401/4!, -17576/3!, 3969/2!, -124/1!, 1/0! ],
[ -16807/5!, 456976/4!, -250047/3!, 15376/2!, -215/1!, 1/0! ], ...
PROG
(PARI) {T(n, k)=my(P); if(n>=k&k>=1, P=matrix(n, n, r, c, if(r>=c, (1-(c+1)^3)^(r-c)/(r-c)!))); return(if(n<k||k<1, 0, (P^-1)[n, k]*(n-k)!))}
CROSSREFS
KEYWORD
nonn,tabl,frac
AUTHOR
Paul D. Hanna, Feb 02 2005
STATUS
approved