OFFSET
1,1
COMMENTS
Also, numbers k such that 3 divides the concatenation of the first k primes (see A019518).
The first comment and the description are true whenever the number of primes congruent to 1 mod 6 exceeds the number of primes congruent to 5 mod 6 and the difference is congruent to 1 mod 3 or the number of primes congruent to 5 mod 6 exceeds the number of primes congruent to 1 mod 6 and the difference is congruent to 2 mod 3. - Roderick MacPhee, Oct 30 2015
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Hisanori Mishima, Smarandache consecutive prime sequences (n = 1 to 100).
MAPLE
s1:=[2]; M:=1000; for n from 2 to M do s1:=[op(s1), s1[n-1]+ithprime(n)]; od: s1;
f:=proc(k) global M, s1; local t1, n; t1:=[]; for n from 1 to M do if s1[n] mod k = 0 then t1:=[op(t1), n]; fi; od: t1; end; f(3);
MATHEMATICA
f[n_] := FromDigits[ Flatten[ Table[ IntegerDigits[ Prime[i]], {i, n}]]]; Select[ Range[ 206], Mod[f[ # ], 3] == 0 &]
Flatten[Position[Accumulate[Prime[Range[250]]], _?(Divisible[#, 3]&)]] (* Harvey P. Dale, Jan 14 2016 *)
PROG
(PARI) a=0; b=0; for(x=3, 1000, if(prime(x)%6==1, a+=1, b+=1); if((a-b)%3==1 || (b-a)%3==2, print1(x", "))) \\ Roderick MacPhee, Oct 30 2015
(PARI) lista(nn) = { s=0; for(k=1, nn, s += prime(k); if(s % 3 == 0, print1(k, ", ")); ); } \\ Altug Alkan, Dec 04 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Mar 19 2005
EXTENSIONS
Entry revised by N. J. A. Sloane, Nov 09 2005
STATUS
approved