This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103208 Numbers n such that 3 divides prime(1) + ... + prime(n). 5
 10, 16, 18, 20, 24, 26, 28, 30, 32, 34, 36, 40, 42, 44, 46, 52, 54, 57, 68, 70, 74, 76, 78, 80, 82, 84, 86, 88, 90, 97, 99, 103, 105, 107, 111, 113, 119, 121, 123, 125, 127, 129, 134, 136, 138, 161, 163, 166, 169, 175, 177, 179, 185, 187, 195, 197, 199, 203, 205, 207, 211, 213 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also, numbers n such that 3 divides the concatenation of the first n primes (see A019518). The first comment and the description are true whenever the number of primes congruent to 1 mod 6 exceeds the number of primes congruent to 5 mod 6 and the difference is congruent to 1 mod 3 or the number of primes congruent to 5 mod 6 exceeds the number of primes congruent to 1 mod 6 and the difference is congruent to 2 mod 3. - Roderick MacPhee, Oct 30 2015 LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 Hisanori Mishima, Smarandache consecutive prime sequences (n = 1 to 100). MAPLE s1:=[2]; M:=1000; for n from 2 to M do s1:=[op(s1), s1[n-1]+ithprime(n)]; od: s1; f:=proc(k) global M, s1; local t1, n; t1:=[]; for n from 1 to M do if s1[n] mod k = 0 then t1:=[op(t1), n]; fi; od: t1; end; f(3); MATHEMATICA f[n_] := FromDigits[ Flatten[ Table[ IntegerDigits[ Prime[i]], {i, n}]]]; Select[ Range[ 206], Mod[f[ # ], 3] == 0 &] Flatten[Position[Accumulate[Prime[Range[250]]], _?(Divisible[#, 3]&)]] (* Harvey P. Dale, Jan 14 2016 *) PROG (PARI) a=0; b=0; for(x=3, 1000, if(prime(x)%6==1, a+=1, b+=1); if((a-b)%3==1 || (b-a)%3==2, print1(x", "))) \\ Roderick MacPhee, Oct 30 2015 (PARI) lista(nn) = { s=0; for(k=1, nn, s += prime(k); if(s % 3 == 0, print1(k, ", ")); ); } \\ Altug Alkan, Dec 04 2015 CROSSREFS Cf. A007504, A019518, A104644, A111287. Sequence in context: A109891 A104869 A104868 * A323196 A187797 A192221 Adjacent sequences:  A103205 A103206 A103207 * A103209 A103210 A103211 KEYWORD nonn AUTHOR Robert G. Wilson v, Mar 19 2005 EXTENSIONS Entry revised by N. J. A. Sloane, Nov 09 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 15:13 EDT 2019. Contains 323480 sequences. (Running on oeis4.)