login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103141 Riordan array (1/(1-x), x*(1 + x + x^2 + x^3)/(1-x)). 3
1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 15, 7, 1, 1, 14, 35, 28, 9, 1, 1, 18, 68, 84, 45, 11, 1, 1, 22, 116, 207, 165, 66, 13, 1, 1, 26, 180, 441, 491, 286, 91, 15, 1, 1, 30, 260, 840, 1251, 996, 455, 120, 17, 1, 1, 34, 356, 1464, 2823, 2948, 1814, 680, 153, 19, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Generalized Pascal matrix: row sums are generalized Pell numbers A103142 and diagonal sums are the Pentanacci numbers A001591(n+4). One of a family of generalized Pascal triangles given by the Riordan arrays (1/(1-x), x*Sum_{j=0..k} x^k/(1-x)). This array has the 'k+2-nacci' numbers as diagonal sums and generalized Pell numbers b(n) = 2b(n-1) + Sum_{j=1..k} b(n-1-j) as row sums. The first two arrays of the family are Pascal's triangle and the Delannoy number triangle.

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

FORMULA

Triangle, read by rows, where the terms are generated by the rule: T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k-1) + T(n-3, k-1) + T(n-4, k-1), with T(0, 0)=1.

G.f.: 1/(1-x-x*y*(1+x+x^2+x^3)). - Vladimir Kruchinin, Apr 21 2015

From Werner Schulte, Dec 07 2018, Dec 12 2018, Dec 13 2018: (Start)

G.f. of column k: Sum_{n>=0} T(n+k,k) * x^n = (1+x+x^2+x^3)^k / (1-x)^(k+1) = (1-x^4)^k / (1-x)^(2*k+1).

Let k >= 0 be some fixed integer and a_k(n) be multiplicative with a_k(p^e) = T(e+k,k) for prime p and e >= 0. Then we have the Dirichlet g.f.: Sum{n>0} a_k(n) / n^s = (zeta(s))^(2*k+1) / (zeta(4*s))^k.

T(n,k) = Sum_{i=0..n-k} binomial(n-i,k) * (Sum_{j=0..i} binomial(k,j) * binomial(3*k-2*j,i-j) * (-2)^j) for 0 <= k <= n (conjectured).

T(n,k) = Sum_{i=0..n-k} binomial(n-i,k) * (Sum_{j=0..floor(i/4)} (-1)^j * binomial(k,j) * binomial(k-1+i-4*j,i-4*j)) for 0 <= k <= n.

T(n,k) = Sum_{i=0..n-k} binomial(n-i,k) * (Sum_{j=0..floor(i/2)} binomial(k,j) * binomial(k,i-2*j)) for 0 <= k <= n. (End)

EXAMPLE

Triangle begins

  1;

  1,  1;

  1,  3,   1;

  1,  6,   5,    1;

  1, 10,  15,    7,    1;

  1, 14,  35,   28,    9,    1;

  1, 18,  68,   84,   45,   11,    1;

  1, 22, 116,  207,  165,   66,   13,   1;

  1, 26, 180,  441,  491,  286,   91,  15,   1;

  1, 30, 260,  840, 1251,  996,  455, 120,  17,  1;

  1, 34, 356, 1464, 2823, 2948, 1814, 680, 153, 19, 1; ...

MATHEMATICA

T[_?Positive, 0] = 1; T[n_, n_] = 1; T[n_, k_] /; 0<k<n := T[n, k] = T[n-1, k] + T[n-1, k-1] + T[n-2, k-1] + T[n-3, k-1] + T[n-4, k-1]; T[_, _] = 0; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Apr 24 2017 *)

PROG

(PARI) T(n, k)=polcoef(polcoef(1/(1-x-x*y*(1+x+x^2+x^3)) + O(x*x^n), n), k) \\ Andrew Howroyd, Dec 12 2018

(Sage)

def A103141Triangle(dim):

    def B(n): return n if n < 5 else 4

    M = matrix(ZZ, dim, dim)

    for k in (0..dim-1): M[k, 0] = 1

    for k in (1..dim-1):

        for m in (k..dim-1):

            M[m, k] = sum(M[j, k-1]*B(m-j) for j in (k-1..m-1))

    return M

A103141Triangle(11) # Peter Luschny, Dec 22 2018

CROSSREFS

Cf. A102036.

Sequence in context: A178867 A102036 A121524 * A129818 A085478 A123970

Adjacent sequences:  A103138 A103139 A103140 * A103142 A103143 A103144

KEYWORD

easy,nonn,tabl

AUTHOR

Paul Barry, Jan 24 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 10:59 EST 2019. Contains 319218 sequences. (Running on oeis4.)