|
|
A103035
|
|
Numbers n such that 6*10^n + 4*R_n - 1 is prime, where R_n = 11...1 is the repunit (A002275) of length n.
|
|
1
|
|
|
0, 2, 5, 6, 11, 15, 69, 90, 134, 189, 245, 267, 270, 470, 1575, 2295, 2507, 3512, 3825, 6857, 11022, 11657, 17499, 35036, 41966, 50558, 93062
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also numbers n such that (58*10^n-13)/9 is prime.
a(28) > 10^5. - Robert Price, Sep 12 2015
|
|
LINKS
|
Table of n, a(n) for n=1..27.
Makoto Kamada, Prime numbers of the form 644...443.
Index entries for primes involving repunits.
|
|
FORMULA
|
a(n) = A101528(n-1) + 1 for n>1.
|
|
MATHEMATICA
|
Do[ If[ PrimeQ[(58*10^n - 13)/9], Print[n]], {n, 0, 10000}]
|
|
PROG
|
(PARI) is(n)=isprime(6*10^n + 4*(10^n-1)/9 - 1) \\ Anders Hellström, Sep 12 2015
|
|
CROSSREFS
|
Cf. A002275, A101528.
Sequence in context: A336527 A293398 A180323 * A088273 A049054 A319140
Adjacent sequences: A103032 A103033 A103034 * A103036 A103037 A103038
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
Robert G. Wilson v, Jan 18 2005
|
|
EXTENSIONS
|
a(21)-a(23) from Kamada data by Robert Price, Dec 14 2010
a(24)-a(25) from Erik Branger May 01 2013 by Ray Chandler, Aug 16 2013
Inserted a(1)=0 by Robert Price, Sep 12 2015
a(26)-a(27) from Robert Price, Sep 12 2015
|
|
STATUS
|
approved
|
|
|
|