|
|
A102985
|
|
Numbers n such that 4*10^n + 2*R_n + 1 is prime, where R_n = 11...1 is the repunit (A002275) of length n.
|
|
1
|
|
|
0, 1, 4, 9, 10, 31, 70, 160, 171, 277, 630, 724, 3717, 5542, 5634, 10656, 12724, 31954
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Also numbers n such that (38*10^n+7)/9 is prime.
a(19) > 10^5. - Robert Price, May 09 2015
|
|
LINKS
|
Table of n, a(n) for n=1..18.
Makoto Kamada, Prime numbers of the form 422...223.
Index entries for primes involving repunits.
|
|
FORMULA
|
a(n) = A101720(n-1) + 1.
|
|
MATHEMATICA
|
Do[ If[ PrimeQ[(38*10^n + 7)/9], Print[n]], {n, 0, 10000}]
|
|
CROSSREFS
|
Cf. A002275, A101720.
Sequence in context: A141395 A121215 A178224 * A112401 A178360 A197125
Adjacent sequences: A102982 A102983 A102984 * A102986 A102987 A102988
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
Robert G. Wilson v, Jan 17 2005
|
|
EXTENSIONS
|
Addition of a(16)-a(17) from Kamada data by Robert Price, Dec 12 2010
a(18) from Erik Branger, May 01 2013, submitted by Ray Chandler, Aug 16 2013
|
|
STATUS
|
approved
|
|
|
|