login
A102917
Column 0 of triangle A102916.
3
1, 1, 1, 3, 7, 36, 139, 1036, 5711, 56355, 408354, 5045370, 45605881, 679409158, 7390305396, 129195427716, 1647470410551, 33114233390505, 485292763088275, 11038606786054201, 183049273155939442, 4652371578279864792
OFFSET
0,4
COMMENTS
Also equals the interleaving of A082162 with A102921, which equal column 0 of triangle A102098 and its matrix square (A102920), respectively.
FORMULA
G.f.: 1 = Sum_{n>=0}(a(2*n)+a(2*n+1)*x)*x^(2*n)*Product_{k=1..n+1}(1-k*x) where a(2*n)=A082162(n) and a(2*n+1)=A102921(n).
EXAMPLE
1 = 1*(1-x) + 1*x*(1-x) + 1*x^2*(1-x)(1-2x) + 3*x^3*(1-x)(1-2x)
+ 7*x^4*(1-x)(1-2x)(1-3x) + 36*x^5*(1-x)(1-2x)(1-3x)
+ 139*x^6*(1-x)(1-2x)(1-3x)(1-4x) + 1036*x^7*(1-x)(1-2x)(1-3x)(1-4x) + ...
+ A082162(n)*x^(2n)*(1-x)(1-2x)*..*(1-(n+1)x)
+ A102921(n)*x^(2n+1)*(1-x)(1-2x)*..*(1-(n+1)x) + ...
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(1-sum(k=0, n-1, a(k)*x^k*prod(j=1, k\2+1, 1-j*x+x*O(x^n))), n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 21 2005
STATUS
approved