login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102898 A Catalan-related transform of 3^n. 1
1, 3, 9, 30, 99, 330, 1098, 3660, 12195, 40650, 135486, 451620, 1505358, 5017860, 16726068, 55753560, 185844771, 619482570, 2064940470, 6883134900, 22943778138, 76479260460, 254930851404, 849769504680, 2832564956814 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Transform of 1/(1-3x) under the mapping g(x)->g(xc(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. The inverse transform is h(x)->h(x/(1+x^2)).

REFERENCES

Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: 2*x/(3*sqrt(1-4*x^2)+2*x-3).

a(0)=1, a(n)=sum{k=0..n, k*binomial(n-1, (n-k)/2)(1+(-1)^(n-k))3^k/(n+k)}, n>0.

Conjecture: 3*n*a(n) -10*n*a(n-1) +12*(3-n)*a(n-2) +40*(n-3)*a(n-3)=0. - R. J. Mathar, Sep 21 2012

a(n) ~ 2^(n+2) * 5^(n-1) / 3^n. - Vaclav Kotesovec, Feb 01 2014

MATHEMATICA

CoefficientList[Series[2*x/(3*Sqrt[1-4*x^2]+2*x-3), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)

CROSSREFS

Cf. A100087, A098615.

Sequence in context: A199137 A089978 A052906 * A050181 A275690 A089931

Adjacent sequences:  A102895 A102896 A102897 * A102899 A102900 A102901

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Jan 17 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 04:58 EST 2016. Contains 279034 sequences.