login
A102873
Prime differences between 2^n and 3^m when they are nearly equal for n and m to 200.
0
5, 7, 13, 47, 502829, 95622386615329600236050591, 31282850202880064644204601069, 463689046302626373360766753609741, 15491551101739718820967497643203613
OFFSET
1,1
COMMENTS
The first array "c" can be used to extend A102872. d = Delete[Union[Table[If[PrimeQ[c[[n]]], c[[n]], 0], {n, 1, Length[c]}]], 1] finds the primes in this line between 2^n and 3^m.
FORMULA
a(q) = If 2^n and 3^m are such that 2^n>3^n and Floor[2^n/3^m]<2 and when Abs[2^n-3^m] if prime, then a[q]=Abs[2^n-3^m]
MATHEMATICA
c = Delete[Union[Flatten[Table[Table[If [ (2^n > 3^m) && Floor[2^n/3^m] < 2, Abs[2^n - 3^m], 0], {m, 1, n}], {n, 1, 200}], 1]], 1] d = Delete[Union[Table[If[PrimeQ[c[[n]]], c[[n]], 0], {n, 1, Length[c]}]], 1]
CROSSREFS
Sequence in context: A109904 A077781 A102872 * A356847 A342506 A158892
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Mar 01 2005
EXTENSIONS
Is this well-defined? "Up to 200" bothers me. - N. J. A. Sloane.
STATUS
approved