The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102871 a(n) = a(n-3) - 5*a(n-2) + 5*a(n-1), a(0) = 1, a(1) = 3, a(2) = 10. 6
 1, 3, 10, 36, 133, 495, 1846, 6888, 25705, 95931, 358018, 1336140, 4986541, 18610023, 69453550, 259204176, 967363153, 3610248435, 13473630586, 50284273908, 187663465045, 700369586271, 2613814880038 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A floretion-generated sequence resulting from a particular transform of the periodic sequence (-1,1). Also indices of the centered triangular numbers which are triangular numbers - Richard Choulet, Oct 09 2007 a(n) red and b(n) blue balls in an urn; draw 2 balls without replacement. Probability(2 red balls) = 3*Probability(2 blue balls); b(n)=A101265(n). - Paul Weisenhorn, Aug 02 2010 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,-5,1). FORMULA 2*a(n) - A001834(n) = (-1)^(n+1); a(n) = 4*a(n-1) - a(n) - 1; G.f. (2*x-1)/((x-1)*(x^2-4*x+1)). Superseeker results: a(n+2) - 2a(n+1) + a(n) = A001834(n+1) (from this and the first relation involving A001834 it follows that 4a(n+1) - a(n+2) - a(n) = (-1)^n as well as the recurrence relation given for A001834 ); a(n+1) - a(n) = A001075(n+1); a(n+2) - a(n) = A082841(n+1). a(j+3) - 3*a(j+2) - 3*a(j+1) + a(j) = -2 for all j. a(n+1) = 2*a(n) - 0.5 + 0.5*(12*a(n)^2 - 12*a(n) + 9)^0.5. - Richard Choulet, Oct 09 2007 a(n) = 1/2 - (1/4)*sqrt(3)*(2 - sqrt(3))^n + (1/4)*sqrt(3)*(2 + sqrt(3))^n + (1/4)*(2 - sqrt(3))^n + (1/4)*(2 + sqrt(3))^n, with n >= 0. - Paolo P. Lava, Oct 03 2008 a(n) = (sqrt(12*b(n)*(b(n)-1) + 1) + 1)/2; b(n) = A101265(n). - Paul Weisenhorn, Aug 02 2010 a(n) = A001571(n) + 1. - Johannes Boot, Jun 17 2011 EXAMPLE For n=5, a(5)=495; b(5)=286; binomial(495,2) = 122265 = 3*binomial(286,2). - Paul Weisenhorn, Aug 02 2010 MAPLE a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=4*a[n-1]-a[n-2]-1 od: seq(a[n], n=1..23); # Zerinvary Lajos, Mar 08 2008 MATHEMATICA LinearRecurrence[{5, -5, 1}, {1, 3, 10}, 30] (* Harvey P. Dale, Oct 04 2011 *) PROG Floretion Algebra Multiplication Program, FAMP Code: .5em[J* ]forseq[ .25( 'i + 'j + 'k + i' + j' + k' + 'ii' + 'jj' + 'kk' + 'ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj' + e ) ], em[J]forseq = A001834, vesforseq = (1, -1, 1, -1). ForType 1A. Identity used: em[J]forseq + em[J* ]forseq = vesforseq. CROSSREFS Cf. A001075 (first differences), A001834, A082841. Sequence in context: A149040 A055989 A329533 * A277287 A119374 A272686 Adjacent sequences: A102868 A102869 A102870 * A102872 A102873 A102874 KEYWORD nonn,easy AUTHOR Creighton Dement, Mar 01 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 01:25 EST 2022. Contains 358711 sequences. (Running on oeis4.)