login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102841 a(n) = ((9*n^2 + 33*n + 26)*2^n + (-1)^n)/27. 1
1, 5, 19, 61, 179, 493, 1299, 3309, 8211, 19949, 47635, 112109, 260627, 599533, 1366547, 3089901, 6937107, 15476205, 34331155, 75769325, 166451731, 364127725, 793500179, 1723082221, 3729512979, 8048092653, 17319057939 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A floretion-generated sequence relating the number of edges and faces in n-dimensional hypercube.

Equals A001787, (1, 4, 12, 32, 80,...) convolved with A001045, the Jacobsthal sequence. - Gary W. Adamson, May 23 2009

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,-6,-4,8).

FORMULA

G.f.: 1/((1+x)*(1-2*x)^3).

a(n+1) - 2*a(n) = A045883(n+2).

a(n) + a(n+1) = A001788(n+2).

MATHEMATICA

Table[(1/27)*((9 n^2 + 33 n + 26) 2^n + (-1)^n), {n, 0, 50}] (* or *) LinearRecurrence[{5, -6, -4, 8}, {1, 5, 19, 61}, 50] (* G. C. Greubel, Sep 27 2017 *)

CROSSREFS

Cf. A045883, A001788, A001793, A102301.

Cf. A001787, A001045. [Gary W. Adamson, May 23 2009]

Sequence in context: A189714 A128638 A036630 * A036637 A036644 A000342

Adjacent sequences:  A102838 A102839 A102840 * A102842 A102843 A102844

KEYWORD

nonn

AUTHOR

Creighton Dement, Feb 27 2005

EXTENSIONS

Corrected by T. D. Noe, Nov 08 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 06:31 EST 2017. Contains 294989 sequences.