login
Numbers that are not the sum of distinct tetrahedral numbers.
8

%I #17 Sep 15 2022 10:38:37

%S 2,3,6,7,8,9,12,13,16,17,18,19,22,23,26,27,28,29,32,33,37,38,41,42,43,

%T 44,47,48,51,52,53,54,58,62,63,64,68,72,73,74,75,78,79,82,83,93,97,

%U 100,103,107,110,113,117,127,128,132,136,137,138,142,146,147,148

%N Numbers that are not the sum of distinct tetrahedral numbers.

%C The b-file contains all the members of the sequence. See link. - _Robert Israel_, Dec 29 2019

%H Robert Israel, <a href="/A102806/b102806.txt">Table of n, a(n) for n = 1..112</a>

%H Robert Israel, <a href="/A102806/a102806.pdf">Proof that the b-file is full</a>

%p N:= 100000: # to test all n <= N

%p ft:= t -> t*(t+1)*(t+2)/6:

%p tets:= map(ft, [$1..floor((6*N)^(1/3))]):

%p f:= proc(n,tmax) option remember;

%p local res, s;

%p if member(n, tets) and n < tmax then return false fi;

%p for s in tets while s < min(n, tmax) do

%p if not procname(n-s,s) then return false fi

%p od;

%p true

%p end proc:

%p select(f, [$1..N],infinity); # _Robert Israel_, Dec 29 2019

%t M = 1000; (* to test all n <= M *)

%t ft[t_] := t*(t+1)*(t+2)/6;

%t tets = Map[ft, Range[Floor[(6*M)^(1/3)]]];

%t f[n_, tMax_] := f[n, tMax] = Module[{res, s}, If[MemberQ[tets, n] && n < tMax, Return[False]]; For[i = 1, s = tets[[i]]; i <= Length[tets] && s < Min[n, tMax], i++, If[!f[n-s, s], Return[False]]]; True];

%t Select[Range[M], f[#, Infinity]&] (* _Jean-François Alcover_, Sep 15 2022, after _Robert Israel_ *)

%Y Cf. A000292, A104246, A102795, etc.

%K nonn,fini,full

%O 1,1

%A _Jud McCranie_, Feb 26 2005