

A102674


Number of digits >= 4 in the decimal representations of all integers from 0 to n.


2



0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 7, 8, 9, 10, 11, 12, 12, 12, 12, 12, 13, 14, 15, 16, 17, 18, 18, 18, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 36, 38, 40, 41, 42, 43, 44, 46, 48, 50, 52, 54, 56, 57, 58, 59, 60, 62, 64, 66, 68, 70, 72, 73, 74, 75, 76, 78
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

The total number of digits >= 4 occurring in all the numbers 0, 1, 2, ... n (in decimal representation).  Hieronymus Fischer, Jun 10 2012


LINKS

Hieronymus Fischer, Table of n, a(n) for n = 0..10000


FORMULA

Contribution from Hieronymus Fischer, Jun 10 2012 (Start):
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 3/5)*(2n + 2 + (1/5  floor(n/10^j + 3/5))*10^j)  floor(n/10^j)*(2n + 2  (1 + floor(n/10^j)) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A102673(n) + (1/2)*Sum_{j=1..m+1} (((1/5)*floor(n/10^j + 3/5) + floor(n/10^j))*10^j  (floor(n/10^j + 3/5)^2  floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m  1) = 6*m*10^(m1).
(This is the total number of digits >= 4 occurring in all the numbers with <= m places.)
G.f.: g(x) = (1/(1x)^2)*Sum_{j>=0} (x^(4*10^j)  x^(10*10^j))/(1  x^10^(j+1)). (End)


MAPLE

p:=proc(n) local b, ct, j: b:=convert(n, base, 10): ct:=0: for j from 1 to nops(b) do if b[j]>=4 then ct:=ct+1 else ct:=ct fi od: ct: end:seq(add(p(i), i=0..n), n=0..90); # Emeric Deutsch, Feb 22 2005


MATHEMATICA

Accumulate[Table[Total[Drop[Most[DigitCount[n]], 3]], {n, 0, 80}]] (* Harvey P. Dale, Nov 27 2015 *)


CROSSREFS

Partial sums of A102673.
Cf. A027868, A054899, A055640, A055641, A102669A102685, A117804, A122840, A122841, A160093, A160094, A196563, A196564.
Cf. A000120, A000788, A023416, A059015 (for base 2).
Sequence in context: A101272 A006160 A071640 * A097623 A198462 A069754
Adjacent sequences: A102671 A102672 A102673 * A102675 A102676 A102677


KEYWORD

nonn,base,easy


AUTHOR

N. J. A. Sloane, Feb 03 2005


EXTENSIONS

More terms from Emeric Deutsch, Feb 22 2005


STATUS

approved



