OFFSET
0,4
COMMENTS
The total number of digits >= 2 occurring in all the numbers 0, 1, 2, ..., n (in decimal representation). - Hieronymus Fischer, Jun 10 2012
LINKS
Hieronymus Fischer, Table of n, a(n) for n = 0..10000
FORMULA
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 0.8)*(2n + 2 + ((3/5) - floor(n/10^j + 4/5))*10^j) - floor(n/10^j)*(2n + 2 - (1 + floor(n/10^j)) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)* A102669(n) + (1/2)*Sum_{j=1..m+1} (((3/5)*floor(n/10^j + 4/5) + floor(n/10^j))*10^j - (floor(n/10^j + 4/5)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m - 1) = 8*m*10^(m-1).
(This is the total number of digits >= 2 occurring in all the numbers with <= m places.)
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(2*10^j) - x^(10*10^j))/(1 - x^10^(j+1)).
General formulas for the total number of digits >= d in the decimal representations of all integers from 0 to n.
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + (10-d)/10) *(2n + 2 + ((5-d)/5 - floor(n/10^j + (10-d)/10))*10^j) - floor(n/10^j)*(2n + 2 - (1 + floor(n/10^j)) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*F(n,d) + (1/2)*Sum_{j=1..m+1} ((((5-d)/5)*floor(n/10^j + (10-d)/10) + floor(n/10^j))*10^j - (floor(n/10^j + (10-d)/10)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)) and F(n,d) = number of digits >= d in the decimal representation of n.
a(10^m - 1) = (10-d)*m*10^(m-1).
(This is the total number of digits >= d occurring in all the numbers with <= m places.)
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(d*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)
MAPLE
p:=proc(n) local b, ct, j: b:=convert(n, base, 10): ct:=0: for j from 1 to nops(b) do if b[j]>=2 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(add(p(i), i=0..n), n=0..77); # Emeric Deutsch, Feb 23 2005
MATHEMATICA
Accumulate[Table[Count[IntegerDigits[n], _?(#>1&)], {n, 0, 80}]] (* Harvey P. Dale, Apr 17 2014 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
N. J. A. Sloane, Feb 03 2005
EXTENSIONS
More terms from Emeric Deutsch, Feb 23 2005
STATUS
approved