login
A102652
a(n) = 4 * floor(24*2^n/15) = 4*A077854(n).
4
4, 12, 24, 48, 100, 204, 408, 816, 1636, 3276, 6552, 13104, 26212, 52428, 104856, 209712, 419428, 838860, 1677720, 3355440, 6710884, 13421772, 26843544, 53687088, 107374180, 214748364, 429496728, 858993456, 1717986916, 3435973836
OFFSET
0,1
COMMENTS
In binary, each term differs from the previous by a single bit.
FORMULA
G.f.: 4 / ( (x-1)*(2*x-1)*(x^2+1) ). - R. J. Mathar, Feb 20 2011
MAPLE
A102652:=n->4 * floor(24*2^n/15); seq(A102652(n), n=0..30); # Wesley Ivan Hurt, Feb 25 2014
MATHEMATICA
Table[4*Floor[24*2^n/15], {n, 0, 30}] (* or *) LinearRecurrence[{3, -3, 3, -2}, {4, 12, 24, 48}, 30] (* Harvey P. Dale, Oct 20 2013 *)
CoefficientList[Series[4/((x - 1) (2 x - 1) (x^2 + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Feb 28 2014 *)
PROG
(PARI) a(n)=24<<n\15*4 \\ Charles R Greathouse IV, Feb 04 2016
CROSSREFS
KEYWORD
easy,nonn,less
AUTHOR
Odimar Fabeny, Feb 02 2005
EXTENSIONS
Edited by Don Reble, Mar 28 2006
STATUS
approved