login
A102650
a(n) = 4 * floor(28*2^n/15).
4
4, 12, 28, 56, 116, 236, 476, 952, 1908, 3820, 7644, 15288, 30580, 61164, 122332, 244664, 489332, 978668, 1957340, 3914680, 7829364, 15658732, 31317468, 62634936, 125269876, 250539756, 501079516, 1002159032, 2004318068
OFFSET
0,1
COMMENTS
In binary, each term differs from the previous by a single bit.
FORMULA
G.f.: ( 4+4*x+4*x^2 ) / ( (x-1)*(2*x-1)*(1+x)*(x^2+1) ). - R. J. Mathar, Feb 20 2011
MAPLE
A102650:=n->4*floor(28*2^n/15); seq(A102650(n), n=0..40); # Wesley Ivan Hurt, Jan 21 2014
MATHEMATICA
a[n_] := 4*Floor[28*2^n/15]; Table[a[n], {n, 0, 40}] (* Stefan Steinerberger, Apr 08 2006 *)
CoefficientList[Series[(4+4x+4x^2)/((x-1)(2x-1)(1+x)(x^2+1)), {x, 0, 45}], x] (* Harvey P. Dale, Mar 13 2011 *)
PROG
(PARI) a(n)=28<<n\15*4 \\ Charles R Greathouse IV, Feb 04 2016
CROSSREFS
KEYWORD
easy,nonn,less
AUTHOR
Odimar Fabeny, Feb 02 2005
EXTENSIONS
Edited by Don Reble, Mar 28 2006
More terms from Stefan Steinerberger, Apr 08 2006
STATUS
approved