login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102647 a(n) = product of the remainders when the n-th prime is divided by primes up to the (n-1)-st prime. 8
1, 1, 2, 2, 8, 36, 288, 1920, 2880, 120960, 362880, 6386688, 34836480, 217728000, 3881779200, 275904921600, 1785411403776, 28217548800000, 608662978560000, 3492203839488000, 964122158039040000, 2224367550332928000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Robert Israel, Table of n, a(n) for n = 1..413

EXAMPLE

Prime(6) = 13, 13 mod 2 = 1, 13 mod 3 = 1, 13 mod 5 = 3, 13 mod 7 = 6, 13 mod 11 = 2 so a(6) = 1*1*3*6*2 = 36.

MAPLE

f:= proc(n) local p, i;

  p:= ithprime(n);

  mul(p mod ithprime(i), i=1..n-1)

end proc:

map(f, [$1..25]); # Robert Israel, Jan 12 2021

MATHEMATICA

f[n_] := Times @@ Mod[ Prime[n], Table[ Prime[i], {i, n - 1}]]; Table[ f[n], {n, 22}] (* Robert G. Wilson v, Feb 04 2005 *)

Join[{0}, Table[Times@@Mod[Prime[n], Prime[Range[n-1]]], {n, 2, 30}]] (* Harvey P. Dale, May 16 2019 *)

PROG

(PARI) a(n) = my(pr = 1, pn = prime(n)); forprime (q=1, precprime(pn-1), pr *= (pn % q)); pr; \\ Michel Marcus, Jan 12 2021

CROSSREFS

Cf. A033955, A062347.

Sequence in context: A121197 A219348 A009543 * A318869 A060224 A232980

Adjacent sequences:  A102644 A102645 A102646 * A102648 A102649 A102650

KEYWORD

nonn

AUTHOR

Hans Boelens (h.p.m.boelens(AT)pl.hanze.nl), Feb 02 2005

EXTENSIONS

More terms from Robert G. Wilson v, Feb 04 2005

a(1) (an empty product, therefore 1 by standard convention) corrected by N. J. A. Sloane, Jan 11 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 2 23:51 EDT 2022. Contains 357230 sequences. (Running on oeis4.)