login
A102619
Numbers which are the sum of two positive cubes and divisible by 19.
6
133, 152, 513, 855, 1064, 1216, 1729, 1843, 2071, 2261, 2413, 2869, 2926, 3059, 3439, 3591, 4104, 4123, 4921, 4940, 5833, 6175, 6840, 7163, 7657, 8512, 9386, 9728, 10773, 13167, 13357, 13718, 13832, 13851, 14174, 14364, 14744, 15542, 15561, 16568
OFFSET
1,1
COMMENTS
If 12*h-1083 is a square then some values of 19*h are in this sequence. It is easy to verify that h is of the form 3*m^2-3*m+91, and therefore 19*(3*m^2-3*m+91) = (10-m)^3+(m+9)^3. - Vincenzo Librandi, May 10 2013
LINKS
MATHEMATICA
upto[n_] := Block[{t}, Union@ Reap[ Do[If[ Mod[t = x^3 + y^3, 19] == 0, Sow@t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3)]}]][[2, 1]]]; upto[17000] (* Giovanni Resta, Jun 12 2020 *)
PROG
(Magma) [n: n in [2..2*10^4] | exists{i: i in [1..Iroot(n-1, 3)] | IsPower(n-i^3, 3) and IsZero(n mod 19)}]; // Bruno Berselli, May 10 2013
CROSSREFS
Cf. A003325, A101421 (divisible by k=7), A101852 (k=11), A094447 (k=13), A099178 (k=17), A101806 (k=23), A224483 (k=29), A102658 (k=31), A102618 (k=37).
Sequence in context: A003915 A046439 A031188 * A020446 A123997 A316630
KEYWORD
nonn,easy
AUTHOR
Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 31 2005
STATUS
approved