login
A102618
Numbers which are the sum of two positive cubes and divisible by 37.
6
370, 407, 1332, 2331, 2960, 3256, 4921, 5957, 8029, 8288, 9990, 10656, 10989, 12691, 12913, 13357, 13949, 14023, 14911, 16021, 16354, 17353, 18648, 18907, 19684, 19721, 20683, 22681, 23680, 24605, 24901, 26048, 27343, 30007, 30303, 32893, 34965, 35964, 36001, 36556, 37259, 39331, 39368, 39627
OFFSET
1,1
LINKS
MAPLE
N:= 200000: # for terms <= N
G:= expand(add(x^(i^3), i=1..floor(N^(1/3)))^2):
select(t -> coeff(G, x, t) > 0, [seq(i, i=37..N, 37)]); # Robert Israel, Jun 12 2020
MATHEMATICA
upto[n_] := Block[{t}, Union@ Reap[ Do[If[ Mod[t = x^3 + y^3, 37] == 0, Sow@ t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3) ]}]][[2, 1]]]; upto[40000] (* Giovanni Resta, Jun 12 2020 *)
stpcQ[n_]:=Count[IntegerPartitions[n, {2}], _?(AllTrue[CubeRoot[#], IntegerQ]&)]>0; Select[37* Range[1100], stpcQ] (* Harvey P. Dale, Jul 10 2024 *)
CROSSREFS
Cf. A003325. Other sequences of the form "sum of two positive cubes and divisible by ...": A224484, A224485, A101421, A101852, A094447, A099178, A102619, A101806, A224483, A102658.
Sequence in context: A224562 A276413 A161020 * A225104 A234985 A264895
KEYWORD
nonn
AUTHOR
Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 31 2005
EXTENSIONS
Corrected by Robert Israel, Jun 12 2020
STATUS
approved