OFFSET
1,3
COMMENTS
The denominator of Sum_{k=0 to m} 1/k! is m!/d, where d = A093101(m). If m = 2n+1 > 1, then d is even and a(n) = d/2.
LINKS
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, arXiv:0709.0671 [math.NT], 2007-2009; Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
FORMULA
a(n) = gcd(m!, 1+m+m(m-1)+m(m-1)(m-2)+...+m!)/2, where m = 2n+1.
EXAMPLE
1/0! + 1/1! + 1/2! + 1/3! + 1/4! + 1/5! + 1/6! + 1/7! = 13700/5040 = (20*685)/(20*252) and 7 = 2*3+1, so a(3) = 20/2 = 10.
PROG
(PARI) a(n) = {my(m = (2*n+1), s = 1, prt = m); for (k=1, m, s += prt; prt *= (m-k); ); gcd(m!, s)/2; } \\ Michel Marcus, Sep 29 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Jan 22 2005
STATUS
approved