

A102575


Decimal expansion of 2^(3/2)^(4/3)^(5/4)^(6/5)^(7/6)^(8/7)^(9/8)^(10/9)^(11/10)....


3



3, 5, 0, 3, 8, 0, 9, 9, 7, 2, 4, 5, 2, 0, 1, 7, 1, 0, 8, 6, 3, 9, 5, 3, 7, 4, 9, 1, 7, 7, 1, 3, 2, 6, 7, 0, 0, 7, 6, 8, 3, 2, 1, 5, 4, 6, 6, 5, 0, 3, 0, 0, 2, 6, 4, 9, 9, 5, 9, 9, 5, 9, 7, 3, 1, 2, 0, 9, 1, 3, 0, 0, 8, 1, 1, 3, 7, 4, 3, 3, 6, 3, 7, 6, 3, 7, 8, 8, 3, 5, 0, 6, 8, 3, 7, 4, 9, 9, 3, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

I do not use brackets for the powers, so do not confuse this with 2^(3/2*4/3*5/4...)
Obtaining 100 digits of precision only requires computing 2^(3/2)^(4/3)^...^(70/69).  Ryan Propper, May 06 2006


LINKS

Table of n, a(n) for n=1..100.


EXAMPLE

3.5038099724520171086395374917713267007683...  Jianing Song, Nov 18 2018


MATHEMATICA

k = 1; For[a = 100, a > 1, a, k = (a/(a1))^k]; First[RealDigits[N[k, 100]]] (* Ryan Propper, May 06 2006 *)


CROSSREFS

Sequence in context: A212394 A010614 A153099 * A309091 A200520 A224933
Adjacent sequences: A102572 A102573 A102574 * A102576 A102577 A102578


KEYWORD

cons,nonn


AUTHOR

Raes Tom (tommy1729(AT)hotmail.com), Feb 25 2005


EXTENSIONS

More terms from Ryan Propper, May 06 2006


STATUS

approved



