login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triangle read by rows: row n contains the numbers C(n,k)^(k-1) for 0 <= k <= n, n >= 0.
2

%I #13 Jul 12 2019 16:32:49

%S 1,1,1,1,1,1,1,1,3,1,1,1,6,16,1,1,1,10,100,125,1,1,1,15,400,3375,1296,

%T 1,1,1,21,1225,42875,194481,16807,1,1,1,28,3136,343000,9834496,

%U 17210368,262144,1,1,1,36,7056,2000376,252047376,4182119424,2176782336,4782969,1

%N Triangle read by rows: row n contains the numbers C(n,k)^(k-1) for 0 <= k <= n, n >= 0.

%H Harvey P. Dale, <a href="/A102480/b102480.txt">Table of n, a(n) for n = 0..1000</a>

%H C. Lamathe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Lamathe/lamathe2.html">The Number of Labeled k-Arch Graphs</a>, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.1.

%e Triangle begins:

%e 1

%e 1 1

%e 1 1 1

%e 1 1 3 1

%e 1 1 6 16 1

%e 1 1 10 100 125 1

%p T:=proc(n,k) if k>n then 0 else binomial(n,k)^(k-1) fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; _Emeric Deutsch_, Apr 12 2005

%t Table[Binomial[n,k]^(k-1),{n,0,10},{k,0,n}]//Flatten (* _Harvey P. Dale_, Jul 12 2019 *)

%o (PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(n,k)^(k-1), ", ");); print(););} \\ _Michel Marcus_, May 23 2015

%Y Diagonals give A000272, A098721-A098724. A102479 is another version.

%K nonn,tabl,easy

%O 0,9

%A _N. J. A. Sloane_, Feb 24 2005

%E More terms from _Emeric Deutsch_, Apr 12 2005