login
A102480
Triangle read by rows: row n contains the numbers C(n,k)^(k-1) for 0 <= k <= n, n >= 0.
2
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 6, 16, 1, 1, 1, 10, 100, 125, 1, 1, 1, 15, 400, 3375, 1296, 1, 1, 1, 21, 1225, 42875, 194481, 16807, 1, 1, 1, 28, 3136, 343000, 9834496, 17210368, 262144, 1, 1, 1, 36, 7056, 2000376, 252047376, 4182119424, 2176782336, 4782969, 1
OFFSET
0,9
LINKS
C. Lamathe, The Number of Labeled k-Arch Graphs, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.1.
EXAMPLE
Triangle begins:
1
1 1
1 1 1
1 1 3 1
1 1 6 16 1
1 1 10 100 125 1
MAPLE
T:=proc(n, k) if k>n then 0 else binomial(n, k)^(k-1) fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Apr 12 2005
MATHEMATICA
Table[Binomial[n, k]^(k-1), {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Jul 12 2019 *)
PROG
(PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(n, k)^(k-1), ", "); ); print(); ); } \\ Michel Marcus, May 23 2015
CROSSREFS
Diagonals give A000272, A098721-A098724. A102479 is another version.
Sequence in context: A126470 A179701 A276996 * A157964 A140670 A293682
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Feb 24 2005
EXTENSIONS
More terms from Emeric Deutsch, Apr 12 2005
STATUS
approved