login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102460 a(n) = 1 if n is a Lucas number, else a(n) = 0. 14
0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The number of nonnegative integer solutions to 25*x^4-10*n^2*x^2+n^4-16=0. - Hieronymus Fischer, Jul 02 2007

a(n)=1 if and only if there is an integer m such that x=n is a root of p(x)=x^4-10*m^2*x^2+25*m^4-16. - Hieronymus Fischer, Jul 02 2007

For n>=3: a(n)=1 iff floor(log_phi(n+1/2))=ceiling(log_phi(n-1/2)). - Hieronymus Fischer, Jul 02 2007

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..65537

Casey Mongoven, Lucas Binary no. 1; electronic music created with this sequence.

Index entries for characteristic functions

FORMULA

G.f.: g(x)=sum{k>=0, x^A000032(k)}. - Hieronymus Fischer, Jul 02 2007

a(n)=1+floor(arcsinh(n/2)/log(phi))-ceiling(arccosh(n/2)/log(phi)) for n>=3, where phi=(1+sqrt(5))/2. - Hieronymus Fischer, Jul 02 2007

a(n)=1+A130241(n)-A130242(n) for n>=3. - Hieronymus Fischer, Jul 02 2007

a(n)=1+A130247(n)-A130242(n) for n=>2. - Hieronymus Fischer, Jul 02 2007

a(n)=A130245(n)-A130245(n-1) for n>=1. - Hieronymus Fischer, Jul 02 2007

For n>=3: a(n)=1 iff A130241(n)=A130242(n). - Hieronymus Fischer, Jul 02 2007

MATHEMATICA

{0}~Join~ReplacePart[ConstantArray[0, Last@ #], Map[# -> 1 &, #]] &@ Array[LucasL, 11, 0] (* Michael De Vlieger, Nov 22 2017 *)

PROG

(PARI) a(n)=my(f=factor(25*'x^4-10*n^2*'x^2+n^4-16)[, 1]); sum(i=1, #f, poldegree(f[i])==1 && polcoeff(f[i], 0)<=0) \\ Charles R Greathouse IV, Nov 06 2014

(PARI) A102460(n) = { my(u1=1, u2=3, old_u1); if(n<=2, sign(n), while(n>u2, old_u1=u1; u1=u2; u2=old_u1+u2); (u2==n)); }; \\ Antti Karttunen, Nov 22 2017

CROSSREFS

Cf. A000032, A130241, A130242, A130247, A123927.

Cf. partial sums A130245.

Cf. also A010056, A104162, A105348, A147612, A294878.

Sequence in context: A269528 A099859 A176416 * A080908 A131720 A131719

Adjacent sequences:  A102457 A102458 A102459 * A102461 A102462 A102463

KEYWORD

nonn

AUTHOR

Casey Mongoven, Apr 18 2005

EXTENSIONS

Data section extended up to a(123) by Antti Karttunen, Nov 22 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 00:32 EST 2019. Contains 329383 sequences. (Running on oeis4.)