%I #25 Aug 17 2020 11:00:22
%S 2,7,2,6,8,3,3,0,2,7,8,6,0,8,4,2,0,4,1,3,9,6,0,9,4,6,3,6,3,6,4,1,6,2,
%T 1,0,4,9,0,7,1,0,3,6,4,6,9,2,9,8,1,0,5,4,4,7,9,4,2,0,0,2,8,2,4,7,2,8,
%U 6,2,6,7,8,9,5,2,8,5,5,4,3,3,7,7,7,9,3,8,4,9,0,8,5,8,4,3,2,9,8,2,5,6,1,2,0
%N Decimal expansion of log_3(20).
%C Hausdorff dimension of Menger sponge.
%D Manfred Schroeder, Fractals, Chaos, Power Laws, Freeman,1991, p. 179.
%D Ian Stewart, Does God Play Dice?, The New Mathematics of Chaos, 2nd Ed., Blackwell Pub'l., Malden MA, 2002, p. 207.
%H Vincenzo Librandi, <a href="/A102447/b102447.txt">Table of n, a(n) for n = 1..1000</a>
%H C. C. Bergemann, PlanetMath.org, <a href="http://planetmath.org/MengerSponge">Menger sponge</a>
%H O. Knill, <a href="http://www.mathematik.com/Menger/Menger.html">Menger Sponge</a>
%H School of Mathematics and Statistics, University of St Andrews, Scotland, <a href="http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Besicovitch.html">Abram Samoilovitch Besicovitch</a>.
%H Turnbull WWW Server, <a href="http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Hausdorff.html">Felix Hausdorff</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MengerSponge.html">Menger Sponge</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Hausdorff_dimension">Hausdorff dimension</a>.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%e 2.72683302786084204139609463636416210490710364692981054479420028247...
%t RealDigits[ Log[3, 20], 10, 111][[1]]
%o (PARI) log(20)/log(3) \\ _Michel Marcus_, Jul 19 2020
%Y Cf. A100831, A102525, A113210, A152564.
%K cons,nonn
%O 1,1
%A _Robert G. Wilson v_, Feb 23 2005