|
|
A102423
|
|
Start at x=2n+1, iterate the map x -> A337349(x); sequence gives smallest number in the resulting cycle, or -1 if the trajectory never cycles.
|
|
4
|
|
|
1, 1, 1, 1, 1, 1, 1, 17, 17, 17, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 17, 1, 1, 17, 17, 1, 1, 1, 1, 1, 1, 1, 1, 17, 17, 1, 1, 1, 1, 17, 17, 1, 1, 1, 1, 1, 17, 17, 1, 1, 1, 1, 1, 17, 17, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 17, 17, 17, 1, 1, 1, 1, 1, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
COMMENTS
|
See A102421 and A337349 for further comments.
|
|
LINKS
|
David A. Corneth, Table of n, a(n) for n = 0..9999
|
|
MATHEMATICA
|
nextx[x_Integer] := Block[{a = x}, a = 3a + 1; While[EvenQ@a, a /= 2]; a = 3a - 1; While[EvenQ@a, a /= 2]; a]; f[n_] := NestWhile[nextx, n, FreeQ[{1, 17, 19, 43, 97, 109, 61}, # ] &]; Table[ If[ f[2n + 1] == 1, 1, 17], {n, 0, 94}] (* Robert G. Wilson v, Sep 20 2006; added 61 to comparison set used for detecting cycles, William P. Orrick, Aug 24 2020; should be "!" prefixing MemberQ, changed to FreeQ, Ray Chandler, Aug 28 2020 *)
|
|
CROSSREFS
|
Cf. A102421, A122563 (iterations to enter cycle), A337349.
Sequence in context: A172091 A291370 A291432 * A010856 A291515 A216436
Adjacent sequences: A102420 A102421 A102422 * A102424 A102425 A102426
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, based on email from Dan Asimov (dasimov(AT)earthlink.net), Sep 15 2006
|
|
EXTENSIONS
|
More terms from Robert G. Wilson v, Sep 20 2006
Replaced A102421 by A337349 in NAME. - R. J. Mathar, Aug 24 2020
|
|
STATUS
|
approved
|
|
|
|