login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102422 Number of partitions of n with k <= 5 parts and each part p <= 5. 3
1, 1, 2, 3, 5, 7, 9, 11, 14, 16, 18, 19, 20, 20, 19, 18, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

There are only 26 nonzero terms.

Contribution from Toby Gottfried, Feb 19 2009: (Start)

a(n) is the number of partitions of n+5 into exactly 5 parts with each part p: 1 <= p <= 6

i.e. the number of different ways to get a total of n+5 with 5 (normal, 6-sided) dice in any order (End)

LINKS

Table of n, a(n) for n=0..98.

FORMULA

G.f.: = 1+z+2*z^2+3*z^3+5*z^4+7*z^5+9*z^6+11*z^7+14*z^8+16*z^9+18*z^10+19*z^11+20*z^12+20*z^13+19*z^14+18*z^15+16*z^16+14*z^17+11*z^18+9*z^19 +7*z^20+5*z^21+3*z^22+2*z^23+z^24+z^25.

EXAMPLE

a(7)=11 because we can write 7=1+2+2+2 or 5+2 or 1+2+4 or 3+4 or 1+3+3 or 1+1+1+1+3 or 1+1+2+3 or 2+2+3 or 1+1+1+2+2 1+1+1+4 or 1+1+5.

A total of 8 comes from 1+1+1+1+4, 1+1+1+2+3, 1+1+2+2+2 and a(3) = 3 [8 = 3+5] [From Toby Gottfried, Feb 19 2009]

CROSSREFS

See A102420 for k=5 and p<=5.

Cf. A000041, A102420, A063746.

Contribution from Toby Gottfried, Feb 19 2009: (Start)

A102420 has the numbers for 4 dice

A063260 gives the number of permuted rolls of each possible total for any number of dice. (End)

Sequence in context: A024678 A265384 A039786 * A062427 A127721 A292620

Adjacent sequences:  A102419 A102420 A102421 * A102423 A102424 A102425

KEYWORD

easy,nonn

AUTHOR

Thomas Wieder, Jan 09 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 17:44 EST 2017. Contains 295004 sequences.