|
|
A102381
|
|
Number of permutations of 1..n in which every pair of adjacent numbers as well as the first and the last entries are relatively prime.
|
|
3
|
|
|
1, 2, 6, 8, 60, 24, 504, 576, 6480, 5760, 242352, 93312, 6200064, 5612544, 95294880, 136249344, 13687492608, 5022425088, 693149184000, 472559616000, 18501259714560, 23441203298304, 4435759798272000, 1568692666368000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n)=n*A086595(n).
|
|
LINKS
|
Table of n, a(n) for n=1..24.
|
|
EXAMPLE
|
a(4)=8 because we have 1234, 1432, 2143, 2341, 3214, 3412, 4123 and 4321.
|
|
MAPLE
|
with(combinat): for n from 1 to 7 do P:=permute(n): ct:=0: for j from 1 to n! do if add(gcd(P[j][i+1], P[j][i]), i=1..n-1)=n-1 and gcd(P[j][1], P[j][n])=1 then ct:=ct+1 else ct:=ct fi od: a[n]:=ct: od: seq(a[n], n=1..7);
|
|
MATHEMATICA
|
{1}~Join~Array[Count[Permutations@ Range@ #, w_ /; AllTrue[Map[ RotateLeft[w, #][[1 ;; 2]] &, w], CoprimeQ @@ # &]] &, 8, 2] (* Michael De Vlieger, Sep 25 2017 *)
|
|
CROSSREFS
|
Cf. A086595, A076220.
Sequence in context: A204546 A192534 A053938 * A075998 A007849 A100621
Adjacent sequences: A102378 A102379 A102380 * A102382 A102383 A102384
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Emeric Deutsch (in collaboration with Ray Chandler, Vladeta Jovovic, Leroy Quet, Zak Seidov, and Joshua Zucker), Apr 09 2005
|
|
EXTENSIONS
|
a(15) and a(16) from Ray Chandler and Joshua Zucker, Apr 12 2005
a(17)-a(24) from Max Alekseyev, Jun 13 2005
|
|
STATUS
|
approved
|
|
|
|