

A102296


(1/6)(n+1)(10n^2+17n+12).


1



2, 13, 43, 102, 200, 347, 553, 828, 1182, 1625, 2167, 2818, 3588, 4487, 5525, 6712, 8058, 9573, 11267, 13150, 15232, 17523, 20033, 22772, 25750, 28977, 32463, 36218, 40252, 44575, 49197, 54128, 59378, 64957, 70875, 77142, 83768, 90763, 98137
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

A floretiongenerated sequence which arises from a particular transform of the centered square numbers: A001844. Specifically, (a(n)) is the jesfortransform of the sequence A001844 with respect to the floretion given in the program code. The sequence relates centered square numbers, triangular numbers and centered octahedral numbers to (n+1)^3. Note: this was made possible in part by the formula already given for A085786.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..2000
Index entries for linear recurrences with constant coefficients, signature (4,6,4,1).


FORMULA

G.f. (x+1)(3x+2)/(x1)^4; a(n) = 2*A001844(n+1)_0  2*A001845(n+1)_0 + A085786(n+1)_1 ( "_" denotes offset ) (n+1)^3 = 2*A001845(n+1)  2*A001844(n+1)  A000217(n+1)  a(n)


PROG

Floretion Algebra Multiplication Program, FAMP Code: 4jesforseq[ + .25'j + .25'k + .25j' + .25k' + .25'ij' + .25'ik' + .25'ji' + .25'ki' + e ], vesforseq = A001844, ForType: 1A, LoopType: tes.
(MAGMA) [(1/6)*(n+1)*(10*n^2+17*n+12): n in [0..50]]; // Vincenzo Librandi, May 30 2011
(PARI) a(n) = (n+1)*(10*n^2+17*n+12)/6


CROSSREFS

Cf. A001844, A001845, A085786, A000217.
Sequence in context: A240173 A235469 A248198 * A025194 A084156 A002534
Adjacent sequences: A102293 A102294 A102295 * A102297 A102298 A102299


KEYWORD

easy,nonn


AUTHOR

Creighton Dement, Feb 19 2005


STATUS

approved



