login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102129 G.f.: ((1-x)(2x+1))/((1+x)(x^2+4x-1)). 0
1, 4, 15, 66, 277, 1176, 4979, 21094, 89353, 378508, 1603383, 6792042, 28771549, 121878240, 516284507, 2187016270, 9264349585, 39244414612, 166242008031, 704212446738, 2983091794981, 12636579626664, 53529410301635 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A floretion-generated, Pellian related sequence.

Sequence results from a force transform of the periodic sequence with initial period (1, -1).

LINKS

Table of n, a(n) for n=0..22.

Index entries for linear recurrences with constant coefficients, signature (3,5,1).

FORMULA

a(n) + a(n+1) = A048875(n+1) - A048875(n).

MATHEMATICA

CoefficientList[ Series[((-1 + x)(2x + 1))/((1 + x)(x^2 + 4x - 1)), {x, 0, 22}], x] (* Robert G. Wilson v, Mar 16 2005 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code: 2ibaseiforseq[A*B] with A = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' B = - .5'ii' + .5'jj' + .5'kk' + .5e, 1vesforseq(n) = (-1)^n, 2basekforseq[A*B] = A048875, ForType: 1A

CROSSREFS

Cf. A048875.

Sequence in context: A007526 A233536 A097422 * A164310 A011967 A250886

Adjacent sequences:  A102126 A102127 A102128 * A102130 A102131 A102132

KEYWORD

easy,nonn

AUTHOR

Creighton Dement, Mar 15 2005

EXTENSIONS

Corrected and extended by Robert G. Wilson v, Mar 16 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 29 03:28 EDT 2017. Contains 287242 sequences.