OFFSET
0,2
MATHEMATICA
T[n_, n_] := n+1; T[n_, k_] /; k>n = 0; T[n_, k_] /; k == n-1 := n^2; T[n_, k_] := T[n, k] = Coefficient[1-Sum[T[i, k]*x^i*Product[1-(j+k)*x, {j, 1, i-k+1}], {i, k, n-1}], x, n]; a[n_] := T[n, 1]; Table[a[n], {n, 0, 17} ] (* Jean-François Alcover, Dec 15 2014 *)
PROG
(PARI) {a(n)=local(A=matrix(2, 2), B); A[1, 1]=1; for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=j, if(j==1, B[i, j]=(A^2)[i-1, 1], B[i, j]=(A^2)[i-1, j])); )); A=B); return(A[n+1, 2])}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 29 2004
STATUS
approved