login
Fixed point of the morphism 1 -> 12, 2 -> 111.
0

%I #15 Oct 01 2016 21:03:03

%S 1,2,1,1,1,1,2,1,2,1,2,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,

%T 2,1,2,1,2,1,1,1,1,2,1,2,1,2,1,2,1,1,1,1,2,1,2,1,2,1,2,1,1,1,1,2,1,2,

%U 1,2,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,2,1,2,1,2,1,1,1,1,2,1,1

%N Fixed point of the morphism 1 -> 12, 2 -> 111.

%C A binary non-Pisot sequence.

%H Mohammad K. Azarian, <a href="http://www.ijpam.eu/contents/2008-46-1/3/3.pdf">On the Fixed Points of a Function and the Fixed Points of its Composite Functions</a>, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44. Mathematical Reviews, MR2433713 (2009c:65129), March 2009. Zentralblatt MATH, Zbl 1160.65015.

%H Mohammad K. Azarian, <a href="http://www.jstor.org/stable/27646421">Fixed Points of a Quadratic Polynomial, Problem 841</a>, College Mathematics Journal, Vol. 38, No. 1, January 2007, p. 60.

%H Mohammad K. Azarian, <a href="http://www.jstor.org/stable/27646572">Solution to Fixed Points of a Quadratic Polynomial, Problem 841</a>, College Mathematics Journal Vol. 39, No. 1, January 2008, pp. 66-67.

%H A. Hof, O. Knill and B. Simon, <a href="http://inis.iaea.org/search/search.aspx?orig_q=RN:27016845">Singular continuous spectrum for palindromic Schroedinger operators</a>, Commun. Math. Phys. 174 (1995), 149-159.

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%p f:=proc(n) if n=1 then 1,2 elif n=2 then 1,1,1 else fi end: g[1]:=[1]: for n from 2 to 7 do g[n]:=map(f,g[n-1]) od: g[7]; # _Emeric Deutsch_, Feb 23 2005

%t Nest[ Function[l, {Flatten[(l /. {1 -> {1, 2}, 2 -> {1, 1, 1}})]}], {1}, 6] (* _Robert G. Wilson v_, Feb 26 2005 *)

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Feb 03 2005

%E More terms from _Emeric Deutsch_, Feb 23 2005