login
A102002
Weighted tribonacci (1,2,4), companion to A102001.
1
1, 7, 13, 31, 85, 199, 493, 1231, 3013, 7447, 18397, 45343, 111925, 276199, 681421, 1681519, 4149157, 10237879, 25262269, 62334655, 153810709, 379529095, 936489133, 2310790159, 5701884805, 14069421655, 34716351901, 85662734431, 211373124853, 521564001319
OFFSET
1,2
COMMENTS
a(n)/a(n-1) tends to 2.46750385...an eigenvalue of M and a root of the characteristic polynomial x^3 - x^2 - 2x - 4. A102001 is generated from [1 1 1 / 2 0 0 / 0 2 0] but has the same characteristic polynomial and recursive multipliers (1,2,4). A101000 uses the recursive multipliers (1,2,4,8).
FORMULA
a(n) = a(n-1) + 2*a(n-2) + 4*a(n-3), a>3. a(n) = center term in M^n * [1 1 1], where M = the 3X3 matrix [0 1 0 / 0 0 1 / 4 2 1]; M^n * [1 1 1] = [a(n-1) a(n) a(n+1)].
G.f.: -x*(4*x^2+6*x+1)/(4*x^3+2*x^2+x-1). [Harvey P. Dale, Apr 28 2012]
EXAMPLE
a(6) = 199 = 85 + 2*31 + 4*13 = a(5) + 2*a(4) + 4*a(3).
a(6) = 199 since M^6 * [1 1 1] = [85 199 493] = [a(5) a(6) a(7)].
MATHEMATICA
LinearRecurrence[{1, 2, 4}, {1, 7, 13}, 50] (* Harvey P. Dale, Apr 28 2012 *)
PROG
(Sage)
from sage.combinat.sloane_functions import recur_gen3
it = recur_gen3(1, 1, 1, 1, 2, 4)
[next(it) for i in range(32)]
# Zerinvary Lajos, Jun 25 2008
CROSSREFS
Sequence in context: A342691 A215932 A091432 * A239679 A195353 A342184
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Dec 23 2004
EXTENSIONS
More terms from Harvey P. Dale, Apr 28 2012
STATUS
approved