login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101981 Column 0 of triangle A101980, which is the matrix logarithm of A008459 (squared entries of Pascal's triangle). 5
0, 1, -1, 4, -33, 456, -9460, 274800, -10643745, 530052880, -32995478376, 2510382661920, -229195817258100, 24730000147369440, -3113066087894608560, 452168671458789789504, -75059305956331837485345, 14121026957032156557396000, -2988687741694684876495689040 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

This sequence is a signed version of A002190 and is related to Bessel functions.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..100

O. Arizmendi, T. Hasebe, F. Lehner, C. Vargas, Relations between cumulants in noncommutative probability, arXiv preprint arXiv:1408.2977 [math.CO], 2014.

Christian Günther, Kai-Uwe Schmidt, Lq norms of Fekete and related polynomials, arXiv:1602.01750 [math.NT], 2016.

FORMULA

a(n) = (-1)^(n+1)*A002190(n) for n>=0.

a(n) = 1 - Sum_{j=1..k-1} binomial(k, j)*binomial(k-1, j-1)*a(j) for n >= 1. See Günther & Schmidt link p.5. - Michel Marcus, Jun 17 2017

MAPLE

a:= n-> (-1)^(n+1)*coeff (series (-ln(BesselJ(0, 2*sqrt(x))), x, n+1), x, n)*(n!)^2: seq (a(n), n=0..30); # Alois P. Heinz, Oct 27 2012

PROG

(PARI) {a(n)=sum(m=1, n, (-1)^(m-1)* (matrix(n+1, n+1, i, j, if(i>j, binomial(i-1, j-1)^2))^m/m)[n+1, 1])}

CROSSREFS

Cf. A008459, A002190, A101980, A101982.

Sequence in context: A193421 A179421 A002190 * A002018 A219504 A258180

Adjacent sequences:  A101978 A101979 A101980 * A101982 A101983 A101984

KEYWORD

sign

AUTHOR

Paul D. Hanna, Dec 23 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 25 15:34 EDT 2017. Contains 289795 sequences.