OFFSET
1,3
COMMENTS
Numbers n such that (210*10^n + 51)/9 is prime.
Numbers n such that digit 2 followed by n >= 0 occurrences of digit 3 followed by digit 9 is prime.
Numbers corresponding to terms <= 656 are certified primes.
a(22) > 10^5. - Robert Price, Nov 25 2014
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A102951(n) - 1. - Robert Price, Nov 25 2014
EXAMPLE
2339 is prime, hence 2 is a term.
MATHEMATICA
Transpose[Select[Partition[With[{no=10000}, Riffle[NestList[10#-51&, 29, no], Range[0, no]]], 2], PrimeQ[First[#]]&]][[2]] (* Harvey P. Dale, Feb 05 2011 *)
PROG
(PARI) a=29; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a-51)
(PARI) for(n=0, 1500, if(isprime((210*10^n+51)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 23 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(19)-a(21) derived from A102951 by Robert Price, Nov 25 2014
STATUS
approved