login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101923 Expansion of 2 * arccot(cos(x)). 3
1, 2, 1, -148, -3719, -20098, 5055961, 403644152, 7831409041, -2707151879398, -472143935754479, -22085804322342748, 9362259685093715401, 2995219209329323622102, 274269338931958691728681, -132963342779629343323496848, -70698673853383423350187244639 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Odd coefficients are zero.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..250

FORMULA

2*acot(cos(x)) = Pi/2 + x^2/2! + 2*x^4/4! + x^6/6! - 148*x^8/8! - 3719*x^10/10! -...

2*atan(cos(x)) = Pi/2 - x^2/2! - 2*x^4/4! - x^6/6! + 148*x^8/8! + 3719*x^10/10! +...

G.f. sin(x)/(1 - 1/2*sin(x)^2) = x + 2*x^3/3! + x^5/5! - 148*x^7/7! - ... - Peter Bala, Feb 06 2017

MAPLE

with(gfun):

series(sin(x)/(1-(1/2)*sin(x)^2), x, 35):

L := seriestolist(%):

seq(op(2*i, L)*(2*i-1)!, i = 1..floor((1/2)*nops(L)));

# Peter Bala, Feb 06 2017

MATHEMATICA

With[{nn=40}, Take[CoefficientList[Series[2ArcCot[Cos[x]], {x, 0, nn}], x] Range[0, nn]!, {3, -1, 2}]] (* Harvey P. Dale, Nov 17 2014 *) (* adapted by Vincenzo Librandi, Feb 07 2017 *)

CROSSREFS

Cf. A012494, A000364, A000464, A156138, A002439.

Cf. other sequences with a g.f. of the form sin(x)/(1 - k*sin^2(x)): A012494 (k=-1), A000364 (k=1), A000464 (k=2), A156138 (k=3), A002439 (k=4).

Sequence in context: A039923 A081708 A012004 * A010788 A258819 A016448

Adjacent sequences:  A101920 A101921 A101922 * A101924 A101925 A101926

KEYWORD

sign,easy

AUTHOR

Ralf Stephan, Dec 27 2004

EXTENSIONS

More terms from Harvey P. Dale, Nov 17 2014

Signs of the data entries corrected by Peter Bala, Feb 06 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 04:57 EST 2018. Contains 299473 sequences. (Running on oeis4.)