login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101908 Triangle read by rows: Characteristic polynomials of lower triangular Bell number matrix. 1
1, -1, 1, -3, 2, 1, -8, 17, -10, 1, -23, 137, -265, 150, 1, -75, 1333, -7389, 13930, -7800, 1, -278, 16558, -277988, 1513897, -2835590, 1583400, 1, -1155, 260364, -14799354, 245309373, -1330523259, 2488395830, -1388641800, 1, -5295, 5042064, -1092706314, 61514634933, -1016911327479 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Roots of the polynomials are the Bell numbers (A000110) except the leading term.

Second column of the triangle = A024716(n) (partial sums of Bell numbers).

Generation of the triangle: n-th row polynomials are the characteristic polynomial of the lower triangular matrix of the first n rows of the Bell triangle.

So from triangle

1

1 2

2 3 5

5 7 10 15

...

we get characteristic polynomials

x - 1

x^2 - 3*x + 2

x^3 - 8*x^2 + 17*x - 10

x^4 - 23*x^3 + 137*x^2 - 265*x + 150

...

All polynomials (except the first) evaluated at 2 give zero.

LINKS

Table of n, a(n) for n=1..41.

EXAMPLE

The characteristic polynomial of the 3X3 matrix

1 0 0

1 2 0

2 3 5

= x^3 - 8x^2 + 17x - 10, with roots (1, 2, 5).

MATHEMATICA

m[0, 0] = 1; m[n_, 0] := m[n, 0] = m[n-1, n-1]; m[n_, k_] := m[n, k] = m[n, k-1] + m[n-1, k-1]; m[n_, k_] /; k > n = 0; bm[n_] := Table[m[n0, k], {n0, 0, n}, {k, 0, n}]; row[n_] := (coes = Reverse[ CoefficientList[ CharacteristicPolynomial[ bm[n], x], x]]; Sign[coes[[1]]]*coes); Flatten[ Table[ row[n], {n, 0, 7}]] (* Jean-Fran├žois Alcover, Sep 13 2012 *)

PROG

(PARI) BM(n) = M=matrix(n, n); M[1, 1]=1; if(n>1, M[2, 1]=1; M[2, 2]=2); \ for(l=3, n, M[l, 1]=M[l-1, l-1]; for(k=2, l, M[l, k]=M[l, k-1]+M[l-1, k-1])); M for(i=1, 10, print(charpoly(BM(i)))) for(i=1, 10, print(round(real(polroots(charpoly(BM(i)))))))

CROSSREFS

Cf. A000110, A024716.

Sequence in context: A204019 A196846 A101413 * A290310 A086963 A079749

Adjacent sequences:  A101905 A101906 A101907 * A101909 A101910 A101911

KEYWORD

sign,tabl

AUTHOR

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Jan 28 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 10:24 EDT 2019. Contains 322330 sequences. (Running on oeis4.)