login
Number of Abelian groups of order 4n.
5

%I #15 Sep 23 2023 03:48:18

%S 2,3,2,5,2,3,2,7,4,3,2,5,2,3,2,11,2,6,2,5,2,3,2,7,4,3,6,5,2,3,2,15,2,

%T 3,2,10,2,3,2,7,2,3,2,5,4,3,2,11,4,6,2,5,2,9,2,7,2,3,2,5,2,3,4,22,2,3,

%U 2,5,2,3,2,14,2,3,4,5,2,3,2,11,10,3,2,5,2,3,2,7,2,6,2,5,2,3,2,15,2,6,4,10,2

%N Number of Abelian groups of order 4n.

%H Antti Karttunen, <a href="/A101876/b101876.txt">Table of n, a(n) for n = 1..65537</a>

%F a(n) = A000688(4*n). - _Antti Karttunen_, Sep 27 2018

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (4 - 6 * A048651) * A021002 = 5.20306278505563943501... . - _Amiram Eldar_, Sep 23 2023

%t a[n_] := FiniteAbelianGroupCount[4*n]; Array[a, 100] (* _Amiram Eldar_, Sep 23 2023*)

%o (PARI) A101876(n) = factorback(apply(e -> numbpart(e),factor(4*n)[,2])); \\ _Antti Karttunen_, Sep 27 2018

%Y Bisection of A101872, quadrisection of A000688.

%Y Cf. A000041, A021002, A048651.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_, Jan 28 2005

%E More terms from _Joshua Zucker_, May 10 2006