%I #9 Jun 17 2017 03:06:05
%S 24,84,194,369,625,979,1449,2054,2814,3750,4884,6239,7839,9709,11875,
%T 14364,17204,20424,24054,28125,32669,37719,43309,49474,56250,63674,
%U 71784,80619,90219,100625,111879,124024,137104,151164,166250,182409
%N n*(n+5)*(50+45*n+n^2)/24.
%C Essentially the partial sums of A101860.
%C 5th partial summation within series as series accumulate n times from an initial sequence of Euler Triangle's row 4: 1,11,11,1: 5th row of the array in the examples of A101860.
%H C. Rossiter, <a href="http://noticingnumbers.net/300SeriesCube.htm">Depictions, Explorations and Formulas of the Euler/Pascal Cube</a>.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F G.f. x*(x-2)*(x^2-12*x+12) / (x-1)^5 . - R. J. Mathar, Dec 06 2011
%K easy,nonn
%O 1,1
%A Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 18 2004