login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101859 a(n) = 11 + (23*n)/2 + n^2/2. 7

%I

%S 0,11,23,36,50,65,81,98,116,135,155,176,198,221,245,270,296,323,351,

%T 380,410,441,473,506,540,575,611,648,686,725,765,806,848,891,935,980,

%U 1026,1073,1121,1170,1220,1271,1323,1376,1430,1485,1541,1598,1656,1715,1775,1836

%N a(n) = 11 + (23*n)/2 + n^2/2.

%C a(n)=A000096 + 9 * A001477 and a(n)=A056126 + A001477. - _Zerinvary Lajos_, Oct 01 2006

%C a(n) = A126890(n+1,10) for n>8. - _Reinhard Zumkeller_, Dec 30 2006

%H C. Rossiter, <a href="http://noticingnumbers.net/300SeriesCube.htm">Depictions, Explorations and Formulas of the Euler/Pascal Cube</a>.

%F a(n)=C(n,2)-10*n,n>=21 - _Zerinvary Lajos_, Nov 26 2006

%F G.f.: (11-10x)/(1-x)^3. [From _R. J. Mathar_, Sep 09 2008]

%F If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n-1) = -f(n,n-1,11), for n>=1. [From _Milan Janjic_, Dec 20 2008]

%F a(n)=n+a(n-1)+11 (with a(-1)=0) [From Vincenzo Librandi, Nov 16 2010]

%F a(n) = 11n - floor(n/2) + floor(n^2/2). [_Wesley Ivan Hurt_, Jun 15 2013]

%p a:=n->sum(floor(k+2*n/(k+n)), k=10..n): seq(a(n),n=10..57); - _Zerinvary Lajos_, Oct 01 2006

%p [seq(binomial(n,2)-10*n,n=21..72)]; - _Zerinvary Lajos_, Nov 26 2006

%p a:=n->sum(numer (k/(k+3)), k=11..n): seq(a(n), n=10..61); - _Zerinvary Lajos_, May 31 2008

%p with(finance):seq(add(cashflows([2,k,8], 0 ),k=1..n),n=0..50); - _Zerinvary Lajos_, Jun 22 2008

%t i=-10;s=0;lst={};Do[s+=n+i;If[s>=0, AppendTo[lst, s]], {n, 0, 6!, 1}];lst [From _Vladimir Joseph Stephan Orlovsky_, Oct 29 2008]

%Y Cf. A000096, A056126, A001477.

%K easy,nonn

%O -1,2

%A Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 18 2004

%E Edited by _N. J. A. Sloane_, Oct 07 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 17 11:46 EDT 2014. Contains 240635 sequences.