login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101859 a(n) = 11 + (23*n)/2 + n^2/2. 8

%I

%S 0,11,23,36,50,65,81,98,116,135,155,176,198,221,245,270,296,323,351,

%T 380,410,441,473,506,540,575,611,648,686,725,765,806,848,891,935,980,

%U 1026,1073,1121,1170,1220,1271,1323,1376,1430,1485,1541,1598,1656,1715,1775,1836

%N a(n) = 11 + (23*n)/2 + n^2/2.

%C a(n+1) = A000096(n) + 9*n = A056126(n) + 2*n. - _Zerinvary Lajos_, Oct 01 2006

%C a(n) = A126890(n+1,10) for n>8. - _Reinhard Zumkeller_, Dec 30 2006

%H C. Rossiter, <a href="http://noticingnumbers.net/300SeriesCube.htm">Depictions, Explorations and Formulas of the Euler/Pascal Cube</a>.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = C(n,2) - 10*n, n>=21. - _Zerinvary Lajos_, Nov 26 2006

%F G.f.: (11-10x)/(1-x)^3. - _R. J. Mathar_, Sep 09 2008

%F If we define f(n,i,a) = sum_{k=0..n-i} (binomial(n,k)*stirling1(n-k,i)*product_{j=0..k-1} (-a-j)), then a(n-1) = -f(n,n-1,11), for n>=1. - _Milan Janjic_, Dec 20 2008

%F a(n) = n + a(n-1) + 11 (with a(-1)=0). - _Vincenzo Librandi_, Nov 16 2010

%F a(n) = 11n - floor(n/2) + floor(n^2/2). - _Wesley Ivan Hurt_, Jun 15 2013

%F a(-1)=0, a(0)=11, a(1)=23, a(n)=3*a(n-1)-3*a(n-2)+a (n-3). - _Harvey P. Dale_, May 01 2016

%e G.f. = 11 + 23*x + 36*x^2 + 50*x^3 + 65*x^4 + 81*x^5 + 98*x^6 + 116*x^7 + ...

%p a:=n->sum(floor(k+2*n/(k+n)), k=10..n): seq(a(n),n=10..57); # _Zerinvary Lajos_, Oct 01 2006

%p [seq(binomial(n,2)-10*n,n=21..72)]; # _Zerinvary Lajos_, Nov 26 2006

%p a:=n->sum(numer (k/(k+3)), k=11..n): seq(a(n), n=10..61); # _Zerinvary Lajos_, May 31 2008

%p with(finance):seq(add(cashflows([2,k,8], 0 ),k=1..n),n=0..50); # _Zerinvary Lajos_, Jun 22 2008

%t i=-10;s=0;lst={};Do[s+=n+i;If[s>=0, AppendTo[lst, s]], {n, 0, 6!, 1}];lst (* _Vladimir Joseph Stephan Orlovsky_, Oct 29 2008 *)

%t Join[{0},CoefficientList[Series[(11-10x)/(1-x)^3,{x,0,50}],x]] (* or *) LinearRecurrence[{3,-3,1},{0,11,23},60] (* _Harvey P. Dale_, May 01 2016 *)

%Y Cf. A000096, A056126, A001477.

%K easy,nonn

%O -1,2

%A Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 18 2004

%E Edited by _N. J. A. Sloane_, Oct 07 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 02:36 EST 2016. Contains 278959 sequences.