OFFSET
1,2
COMMENTS
Numbers n such that (390*10^n + 33)/9 is prime.
Numbers n such that digit 4 followed by n >= 0 occurrences of digit 3 followed by digit 7 is prime.
Numbers corresponding to terms <= 827 are certified primes.
a(34) > 10^5. - Robert Price, May 11 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A102989(n) - 1.
EXAMPLE
4337 is prime, hence 2 is a term.
MATHEMATICA
Select[Range[0, 300], PrimeQ[(390*10^# + 33)/9] &] (* Robert Price, May 11 2015 *)
PROG
(PARI) a=47; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a-33)
(PARI) for(n=0, 1500, if(isprime((390*10^n+33)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 14 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(27)-a(31) from Kamada data by Ray Chandler, Apr 30 2015
a(32)-a(33) from Robert Price, May 11 2015
STATUS
approved