login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101675 Expansion of (1-x-x^2)/(1+x^2+x^4). 3
1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2, 1, 1, 0, 1, -1, -2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Partial sums are A101676.

Periodic with period 6. - Ray Chandler, Sep 03 2015

LINKS

Table of n, a(n) for n=0..104.

Index entries for linear recurrences with constant coefficients, signature (0,-1,0,-1).

FORMULA

a(0) = 1, a(1) = -1, a(2) = -2, a(3) = 1; for n >= 4, a(n)=-a(n-2)-a(n-4).

a(n) = sum{k=0..floor(n/2), (-1)^A010060(n-2k)*mod(binomial(n-k, k), 2)(-1)^k};

a(n) = cos(2*Pi*n/3+Pi/6)/sqrt(3)+sin(2*Pi*n/3+Pi/6)+cos(Pi*n/3+Pi/3)-sin(Pi*n/3+Pi/3)/sqrt(3).

MATHEMATICA

LinearRecurrence[{0, -1, 0, -1}, {1, -1, -2, 1}, 105] (* Ray Chandler, Sep 03 2015 *)

CoefficientList[Series[(1 - x - x^2)/(1 + x^2 + x^4), {x, 0, 150}], x] (* Vincenzo Librandi, Sep 04 2015 *)

PROG

(PARI) Vec((1-x-x^2)/(1+x^2+x^4) + O(x^80)) \\ Michel Marcus, Sep 04 2015

(MAGMA) I:=[1, -1, -2, 1]; [n le 4 select I[n] else -Self(n-2)-Self(n-4): n in [1..120]]; // Vincenzo Librandi, Sep 04 2015

CROSSREFS

Cf. A101676.

Sequence in context: A120936 A214438 A173432 * A051764 A268533 A275849

Adjacent sequences:  A101672 A101673 A101674 * A101676 A101677 A101678

KEYWORD

easy,sign

AUTHOR

Paul Barry, Dec 11 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 16:08 EST 2017. Contains 295003 sequences.