login
A101627
Numerator of partial sums of a certain series.
5
1, 39, 241, 34883, 14039, 1516871, 7601151, 875425657, 7887002813, 7095769757767, 14199583385459, 75087685321529, 75113436870869, 927229349730873529, 927436191807263569, 305182576081725442901, 23479178371879154033, 37713848011377144613, 37717984058802320713, 135759786815564675620247
OFFSET
1,2
COMMENTS
The denominators are given in A101628.
Second member (m=3) of a family defined in A101028.
The limit s=lim(s(n),n->infinity) with the s(n) defined below equals 8*sum(zeta(2*k+1)/3^(2*k),k=1..infinity) with Euler's (or Riemann's) zeta function. This limit is 12*(log(3)-1) = 1.18334746...; see the Abramowitz-Stegun (given in A101028) reference p. 259, eq. 6.3.15 with z=1/3 together with p. 258.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Wolfdieter Lang, Rationals s(n) and more.
FORMULA
a(n)=numerator(s(n)) with s(n)=24*sum(1/((3*k-1)*(3*k)*(3*k+1)), k=1..n).
EXAMPLE
s(3)= 24*(1/(2*3*4)+ 1/(5*6*7) + 1/(8*9*10)) = 241/210, hence a(3)=241 and A101628(3)=210.
MATHEMATICA
Numerator[Accumulate[Table[8/(9k^3-k), {k, 20}]]]
PROG
(PARI) a(n) = numerator(24*sum(k=1, n, 1/((3*k-1)*(3*k)*(3*k+1))));
CROSSREFS
Cf. A101028 (m=2), A101629 (m=4), A101631 (m=5).
Cf. A101628 (denominators).
Sequence in context: A266104 A190538 A190606 * A229639 A070146 A372930
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Dec 23 2004
EXTENSIONS
More terms from Michel Marcus, Mar 01 2022
STATUS
approved