login
Composite lopsided numbers: composite numbers n such that the largest prime factor > 2 sqrt(n).
2

%I #7 Mar 30 2012 17:22:34

%S 22,26,34,38,39,46,51,57,58,62,68,69,74,76,82,86,87,92,93,94,106,111,

%T 115,116,118,122,123,124,129,134,141,142,145,146,148,155,158,159,164,

%U 166,172,174,177,178,183,185,186,188,194,201,202,203,205,206,212,213

%N Composite lopsided numbers: composite numbers n such that the largest prime factor > 2 sqrt(n).

%C All primes > 3 are also lopsided. See A101550 for all lopsided numbers.

%H T. D. Noe, <a href="/A101549/b101549.txt">Table of n, a(n) for n = 1..1000</a>

%H G. Everest, S. Stevens, D. Tamsett and T. Ward, <a href="http://www.arXiv.org/abs/math.NT/0412079">Primitive Divisors of Quadratic Polynomial Sequences</a>

%t Select[Range[2, 300], !PrimeQ[ # ]&&FactorInteger[ # ][[ -1, 1]]>2Sqrt[ # ]&]

%Y Cf. A063763 (composite n such that the largest prime factor > sqrt(n)), A064052 (n such that the largest prime factor > sqrt(n)).

%K nonn

%O 1,1

%A _T. D. Noe_, Dec 06 2004