login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101548 Number of k such that prime(n) divides the left factorial !k = sum_{i=0..k-1} i!. 1
0, 1, 1, 1, 0, 1, 3, 1, 0, 2, 1, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 2, 1, 1, 2, 0, 0, 2, 2, 1, 0, 3, 0, 3, 0, 1, 1, 0, 1, 1, 2, 0, 0, 0, 0, 2, 2, 3, 0, 1, 1, 2, 1, 0, 1, 0, 0, 1, 2, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 4, 1, 2, 0, 1, 3, 0, 1, 0, 1, 1, 1, 1, 2, 0, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,7

COMMENTS

Note that 2 divides every left factorial !k for k>1. A result of Barsky and Benzaghou shows that there is no odd prime p such that p divides !p. Hence if an odd prime p divides !k then we must have k < p.

LINKS

Table of n, a(n) for n=2..106.

D. Barsky and B. Benzaghou, Nombres de Bell et somme de factorielles, Journal de Théorie des Nombres de Bordeaux, 16:1-17, 2004.

Bernd C. Kellner, Some remarks on Kurepa's left factorial, arXiv:math/0410477 [math.NT], 2004.

EXAMPLE

a(8) = 3 because 19 divides !7, !12 and !16.

MATHEMATICA

nn=1000; s=0; t=Table[s=s+n!, {n, 0, nn}]; Table[p=Prime[i]; Length[Position[t, _?(0==Mod[ #, p]&)]], {i, 2, PrimePi[nn]}]

CROSSREFS

Cf. A003422 (left factorials), A049042 (primes dividing some left factorial), A049043 (primes not dividing any left factorial).

Sequence in context: A166408 A128618 A284826 * A117430 A143676 A002726

Adjacent sequences:  A101545 A101546 A101547 * A101549 A101550 A101551

KEYWORD

nonn

AUTHOR

T. D. Noe, Dec 06 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 04:53 EST 2018. Contains 318090 sequences. (Running on oeis4.)