login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101548 Number of k such that prime(n) divides the left factorial !k = sum_{i=0..k-1} i!. 1
0, 1, 1, 1, 0, 1, 3, 1, 0, 2, 1, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 2, 1, 1, 2, 0, 0, 2, 2, 1, 0, 3, 0, 3, 0, 1, 1, 0, 1, 1, 2, 0, 0, 0, 0, 2, 2, 3, 0, 1, 1, 2, 1, 0, 1, 0, 0, 1, 2, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 4, 1, 2, 0, 1, 3, 0, 1, 0, 1, 1, 1, 1, 2, 0, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,7

COMMENTS

Note that 2 divides every left factorial !k for k>1. A result of Barsky and Benzaghou shows that there is no odd prime p such that p divides !p. Hence if an odd prime p divides !k then we must have k < p.

LINKS

Table of n, a(n) for n=2..106.

D. Barsky and B. Benzaghou, Nombres de Bell et somme de factorielles, Journal de Théorie des Nombres de Bordeaux, 16:1-17, 2004.

Bernd C. Kellner, Some remarks on Kurepa's left factorial, arXiv:math/0410477 [math.NT], 2004.

EXAMPLE

a(8) = 3 because 19 divides !7, !12 and !16.

MATHEMATICA

nn=1000; s=0; t=Table[s=s+n!, {n, 0, nn}]; Table[p=Prime[i]; Length[Position[t, _?(0==Mod[ #, p]&)]], {i, 2, PrimePi[nn]}]

CROSSREFS

Cf. A003422 (left factorials), A049042 (primes dividing some left factorial), A049043 (primes not dividing any left factorial).

Sequence in context: A166408 A128618 A284826 * A117430 A143676 A002726

Adjacent sequences:  A101545 A101546 A101547 * A101549 A101550 A101551

KEYWORD

nonn

AUTHOR

T. D. Noe, Dec 06 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 15:01 EST 2017. Contains 295939 sequences.