login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101489 Square array T(n,k), read by antidiagonals: number of binary trees, with n nodes that have no label greater than k. 1
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 4, 1, 1, 2, 5, 10, 10, 1, 1, 2, 5, 13, 26, 26, 1, 1, 2, 5, 14, 37, 73, 73, 1, 1, 2, 5, 14, 41, 109, 213, 213, 1, 1, 2, 5, 14, 42, 126, 334, 645, 645, 1, 1, 2, 5, 14, 42, 131, 398, 1050, 2007, 2007, 1, 1, 2, 5, 14, 42, 132, 422, 1289, 3377, 6391, 6391 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Table of n, a(n) for n=0..77.

M. Bousquet-Mélou, Limit laws for embedded trees, arXiv:math/0501266 [math.CO], 2005.

FORMULA

G.f. of k-th row: A(t) = B(t)*(1-C(t)^(k+2))*(1-C(t)^(k+7))/((1-C(t)^(k+4))*(1-C(t)^(k+5))), with B(t) the g.f. of A000108 and C(t) the g.f. of A101490.

EXAMPLE

1, 1, 1, 2,  4, 10,  26,  73,  213,  645, ...

1, 1, 2, 4, 10, 26,  73, 213,  645, 2007, ...

1, 1, 2, 5, 13, 37, 109, 334, 1050, 3377, ...

1, 1, 2, 5, 14, 41, 126, 398, 1289, 4253, ...

1, 1, 2, 5, 14, 42, 131, 422, 1390, 4664, ...

1, 1, 2, 5, 14, 42, 132, 428, 1422, 4812, ...

1, 1, 2, 5, 14, 42, 132, 429, 1429, 4853, ...

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, ...

MATHEMATICA

nmax = 11;

b[t_] = Sum[Binomial[2n, n]/(n + 1) t^n, {n, 0, nmax}] ;

c[t_] = 1; Do[c[t_] = t (1 + c[t]^2)^2/(1 - c[t] + c[t]^2) + O[t]^(nmax + 1), {nmax + 1}];

a[n_, t_] := a[n, t] = b[t] (1 - c[t]^(n + 2)) ((1 - c[t]^(n + 7))/((1 - c[t]^(n + 4)) (1 - c[t]^(n + 5)))) + O[t]^(nmax + 1);

T[n_, k_] := SeriesCoefficient[a[n, t], {t, 0, k}];

Table[T[n - k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)

CROSSREFS

Rows converge to A000108. First row is A101488.

Cf. A101490.

Sequence in context: A135229 A257543 A081372 * A104156 A070166 A131373

Adjacent sequences:  A101486 A101487 A101488 * A101490 A101491 A101492

KEYWORD

nonn,tabl

AUTHOR

Ralf Stephan, Jan 21 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 01:21 EDT 2020. Contains 337315 sequences. (Running on oeis4.)