login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101463 G.f.: (x^3+x^2+2*x+1)/(x^4+5*x^2+1). 0
1, 2, -4, -9, 19, 43, -91, -206, 436, 987, -2089, -4729, 10009, 22658, -47956, -108561, 229771, 520147, -1100899, -2492174, 5274724, 11940723, -25272721, -57211441, 121088881, 274116482, -580171684, -1313370969, 2779769539, 6292738363, -13318676011 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A floretion-generated sequence relating to Pythagoras' theorem generalized.

REFERENCES

F. A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971.

LINKS

Table of n, a(n) for n=0..30.

James A. Sellers, Domino Tilings and Products of Fibonacci and Pell Numbers, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.2

Index entries for linear recurrences with constant coefficients, signature (0,-5,0,-1)

FORMULA

Let b(1)=1, b(2)=2, b(3)=4 and b(n)=(b(n-1)*b(n-2)+(3+(-1)^n)/2)/b(n-3) then b(n)=abs(a(n)) - Benoit Cloitre, Mar 03 2007

a(n)=-5*a(n-2)-a(n-4), n>3. [From Harvey P. Dale, Apr 15 2012]

G.f.: ( 1+2*x+x^2+x^3 ) / ( 1+5*x^2+x^4 ). - R. J. Mathar, Jun 18 2014

a(n) = -3a(n-1)+2a(n-2) if n even. a(n) = (5*a(n-1)+a(n-2))/2 if n odd. - R. J. Mathar, Jun 18 2014

MATHEMATICA

CoefficientList[Series[(x^3+x^2+2x+1)/(x^4+5x^2+1), {x, 0, 30}], x] (* or *) LinearRecurrence[{0, -5, 0, -1}, {1, 2, -4, -9}, 31] (* Harvey P. Dale, Apr 15 2012 *)

PROG

Floretion Algebra Multiplication Program. FAMP code: em[J* ]sigcycseq[ + .75'i + .5'k + .25i' + .5j' + .5k' - .25'ii' + .25'jj' - .25'kk' - .75'jk' + .5'ki' - .25'kj' + .25e]

CROSSREFS

Elements of even index in the sequence gives A004253. Elements of odd index in the sequence gives A002310.

Cf. A004253, A002310.

Sequence in context: A193021 A112569 A289845 * A206301 A026776 A117160

Adjacent sequences:  A101460 A101461 A101462 * A101464 A101465 A101466

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Jan 20 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 19:06 EST 2017. Contains 294894 sequences.