login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101463 G.f.: (x^3+x^2+2*x+1)/(x^4+5*x^2+1). 0
1, 2, -4, -9, 19, 43, -91, -206, 436, 987, -2089, -4729, 10009, 22658, -47956, -108561, 229771, 520147, -1100899, -2492174, 5274724, 11940723, -25272721, -57211441, 121088881, 274116482, -580171684, -1313370969, 2779769539, 6292738363, -13318676011 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A floretion-generated sequence relating to Pythagoras' theorem generalized.

REFERENCES

F. A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971.

LINKS

Table of n, a(n) for n=0..30.

James A. Sellers, Domino Tilings and Products of Fibonacci and Pell Numbers, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.2

Index entries for linear recurrences with constant coefficients, signature (0,-5,0,-1)

FORMULA

Let b(1)=1, b(2)=2, b(3)=4 and b(n)=(b(n-1)*b(n-2)+(3+(-1)^n)/2)/b(n-3) then b(n)=abs(a(n)) - Benoit Cloitre, Mar 03 2007

a(n)=-5*a(n-2)-a(n-4), n>3. [From Harvey P. Dale, Apr 15 2012]

G.f.: ( 1+2*x+x^2+x^3 ) / ( 1+5*x^2+x^4 ). - R. J. Mathar, Jun 18 2014

a(n) = -3a(n-1)+2a(n-2) if n even. a(n) = (5*a(n-1)+a(n-2))/2 if n odd. - R. J. Mathar, Jun 18 2014

MATHEMATICA

CoefficientList[Series[(x^3+x^2+2x+1)/(x^4+5x^2+1), {x, 0, 30}], x] (* or *) LinearRecurrence[{0, -5, 0, -1}, {1, 2, -4, -9}, 31] (* Harvey P. Dale, Apr 15 2012 *)

PROG

Floretion Algebra Multiplication Program. FAMP code: em[J* ]sigcycseq[ + .75'i + .5'k + .25i' + .5j' + .5k' - .25'ii' + .25'jj' - .25'kk' - .75'jk' + .5'ki' - .25'kj' + .25e]

CROSSREFS

Elements of even index in the sequence gives A004253. Elements of odd index in the sequence gives A002310.

Cf. A004253, A002310.

Sequence in context: A193021 A112569 A289845 * A206301 A026776 A117160

Adjacent sequences:  A101460 A101461 A101462 * A101464 A101465 A101466

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Jan 20 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 18 12:37 EDT 2017. Contains 290720 sequences.