login
A101381
a(n) = n^2*(n+1)^2*(4*n^2 - 5*n + 4)/12.
1
0, 1, 30, 300, 1600, 5925, 17346, 43120, 95040, 191025, 356950, 628716, 1054560, 1697605, 2638650, 3979200, 5844736, 8388225, 11793870, 16281100, 22108800, 29579781, 39045490, 50910960, 65640000, 83760625, 105870726, 132643980, 164836000, 203290725, 248947050
OFFSET
0,3
REFERENCES
T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
FORMULA
G.f.: x*(1 + 23*x + 111*x^2 + 95*x^3 + 10*x^4) / (1-x)^7. - R. J. Mathar, Jun 15 2011
E.g.f.: x*(12 + 168*x + 426*x^2 + 288*x^3 + 63*x^4 + 4*x^5)*exp(x)/12. - G. C. Greubel, Mar 11 2021
MAPLE
A101381:= n-> n^2*(n+1)^2*(4*n^2-5*n+4)/12: seq(A101381(n), n=0..35); # G. C. Greubel, Mar 11 2021
MATHEMATICA
Table[n^2 (n+1)^2 (4n^2-5n+4)/12, {n, 0, 30}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 30, 300, 1600, 5925, 17346}, 40] (* Harvey P. Dale, Feb 03 2021 *)
PROG
(Magma) [n^2*(n+1)^2*(4*n^2-5*n+4)/12: n in [0..40]]; // Vincenzo Librandi, Jun 15 2011
(PARI) vector(35, n, my(m=n-1); m^2*(m+1)^2*(4*m^2-5*m+4)/12) \\ G. C. Greubel, Mar 11 2021
(Sage) [n^2*(n+1)^2*(4*n^2-5*n+4)/12 for n in (0..35)] # G. C. Greubel, Mar 11 2021
CROSSREFS
Sequence in context: A229427 A113754 A129029 * A061605 A125393 A126551
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 15 2005
STATUS
approved