OFFSET
0,3
REFERENCES
T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: x*(1 + 22*x + 106*x^2 + 98*x^3 + 13*x^4)/(1 - x)^7. - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: x*(12 + 162*x + 408*x^2 + 279*x^3 + 62*x^4 + 4*x^5)*exp(x)/12. - G. C. Greubel, Mar 11 2021
MAPLE
A101380:= n-> n^2*(n+1)*(4*n^3-2*n^2+n+3)/12: seq(A101380(n), n=0..35); # G. C. Greubel, Mar 11 2021
MATHEMATICA
Table[n^2(n+1)(4n^3-2n^2+n+3)/12, {n, 0, 40}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 29, 288, 1540, 5725, 16821}, 40] (* Harvey P. Dale, Aug 10 2019 *)
PROG
(Magma) [n^2*(n+1)*(4*n^3-2*n^2+n+3)/12: n in [0..40]]; // Vincenzo Librandi, Jun 15 2011
(PARI) a(n)=n^2*(n+1)*(4*n^3-2*n^2+n+3)/12 \\ Charles R Greathouse IV, Feb 24 2017
(SageMath) [n^2*(n+1)*(4*n^3-2*n^2+n+3)/12 for n in (0..35)] # G. C. Greubel, Mar 11 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 15 2005
STATUS
approved