This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101368 The sequence solves the following problem: find all the pairs (i,j) such that i divides 1+j+j^2 and j divides 1+i+i^2. In fact, the pairs (a(n),a(n+1)), n>0, are all the solutions. 7
 1, 1, 3, 13, 61, 291, 1393, 6673, 31971, 153181, 733933, 3516483, 16848481, 80725921, 386781123, 1853179693, 8879117341, 42542407011, 203832917713, 976622181553, 4679277990051, 22419767768701, 107419560853453, 514678036498563, 2465970621639361, 11815175071698241, 56609904736851843, 271234348612560973 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n) is prime exactly for n = 3, 4, 5, 8, 16, 20, 22, 23, 58, 302, 386, 449, 479, 880 up to 1000. - Tomohiro Yamada, Dec 23 2018 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..1471 T. Cai, Z. Shen, L. Jia, A congruence involving harmonic sums modulo p^alpha q^beta, arXiv preprint arXiv:1503.02798 [math.NT], 2015. W. W. Chao, Problem 2981, Crux Mathematicorum, 30 (2004), p. 430. W. H. Mills, A system of quadratic Diophantine equations. Pacific J. Math. 3:1 (1953), 209-220. Index entries for linear recurrences with constant coefficients, signature (6,-6,1). FORMULA Recurrence: a(1)=a(2)=1 and a(n+1)=(1+a(n)+a(n)^2)/a(n-1) for n>2. G.f.: x(1 - 5x + 3x^2) / [(1-x)(1 - 5x + x^2)]; a(n) = 2 * A089817(n-3) + 1, n>2. - Conjectured by Ralf Stephan, Jan 14 2005, proved by Max Alekseyev, Aug 03 2006 a(n) = 6a(n-1)-6a(n-2)+a(n-3), a(n) = 5a(n-1)-a(n-2)-1. - Floor van Lamoen, Aug 01 2006 a(n) = (4/3 - (2/7)*sqrt(21))*((5 + sqrt(21))/2)^n + (4/3 + (2/7)*sqrt(21))*((5 - sqrt(21))/2)^n + 1/3. - Floor van Lamoen, Aug 04 2006 EXAMPLE a(5) = 61 because (1 + a(4) + a(4)^2)/a(3) = (1 + 13 + 169)/3 = 61. MAPLE seq(coeff(series(x*(1-5*x+3*x^2)/((1-x)*(1-5*x+x^2)), x, n+1), x, n), n = 1 .. 30); # Muniru A Asiru, Dec 28 2018 MATHEMATICA Rest@ CoefficientList[Series[x (1 - 5 x + 3 x^2)/((1 - x) (1 - 5 x + x^2)), {x, 0, 28}], x] (* or *) RecurrenceTable[{a[n] == (1 + a[n - 1] + a[n - 1]^2)/a[n - 2], a[1] == a[2] == 1}, a, {n, 1, 28}] (* or *) RecurrenceTable[{a[n] == 5 a[n - 1] - a[n - 2] - 1, a[1] == a[2] == 1}, a, {n, 1, 28}] (* or *) LinearRecurrence[{6, -6, 1}, {1, 1, 3}, 28] (* Michael De Vlieger, Aug 28 2016 *) PROG (PARI) Vec(x*(1-5*x+3*x^2)/((1-x)*(1-5*x+x^2)) + O(x^30)) \\ Michel Marcus, Aug 03 2016 (PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, -6, 6]^n*[3; 1; 1])[1, 1] \\ Charles R Greathouse IV, Aug 28 2016 (MAGMA) [n le 2 select 1 else 5*Self(n-1)-Self(n-2)-1: n in [1..30]]; // Vincenzo Librandi, Dec 25 2018 (GAP) a:=[1, 1];; for n in [3..30] do a[n]:=5*a[n-1]-a[n-2]-1; od; Print(a); # Muniru A Asiru, Dec 28 2018 CROSSREFS Cf. A001519, A276160. Sequence in context: A239995 A319924 A108143 * A026704 A046748 A256333 Adjacent sequences:  A101365 A101366 A101367 * A101369 A101370 A101371 KEYWORD nonn,easy AUTHOR M. Benito, O. Ciaurri and E. Fernandez (oscar.ciaurri(AT)dmc.unirioja.es), Jan 13 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 03:14 EST 2019. Contains 330013 sequences. (Running on oeis4.)