login
A101295
Number of partitions of n!.
1
1, 1, 2, 11, 1575, 1844349560, 153758476658245881594406593, 347537071782505941949439171855284853031279455482877609142244398412144336038
OFFSET
0,3
COMMENTS
The next term is too large to include. - Robert G. Wilson v, Dec 22 2004
FORMULA
a(n) = A000041(A000142(n)). - Michel Marcus, Mar 25 2015
EXAMPLE
P(3!) = 11; P(4!) = 1575.
MATHEMATICA
Table[ PartitionsP[n!], {n, 8}] (* Robert G. Wilson v, Dec 23 2004 *)
PROG
(MuPAD) combinat::partitions::count(i!) $i=0..8 // Zerinvary Lajos, Apr 16 2007
(PARI) a(n) = numbpart(n!); \\ Michel Marcus, Mar 25 2015
(Magma) a:= func<n | NumberOfPartitions(Factorial(n))>; [a(n): n in [0..8]]; // Vincenzo Librandi, Apr 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Parthasarathy Nambi, Dec 21 2004
EXTENSIONS
More terms from Robert G. Wilson v, Dec 22 2004
STATUS
approved